1
|
Dai H, Zhang S, Zheng X, Luo Z, Chen H, Yao X. Advances in β-Diketocyclisation of Curcumin Derivatives and their Antitumor Activity. Chem Biodivers 2024; 21:e202301556. [PMID: 38095134 DOI: 10.1002/cbdv.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Curcumin, derived from the popular spice turmeric, is a pharmacologically active polyphenol. Curcumin's therapeutic activity has been extensively studied in recent decades, with reports implicating curcumin in many biological activities, particularly, its significant anticancer activity. However, its potential as an oral administration product is hampered by poor bioavailability, which is associated with a variety of factors, including low water solubility, poor intestinal permeability, instability, and degradation at alkaline pH. To improve its bioavailability, modifying β-diketone curcumin with heterocycles, such as pyrazole, isoxazole and triazole is a powerful strategy. Derivatives are synthesized while maintaining the basic skeleton of curcumin. The β-diketone cyclized curcumin derivatives are regulators of multiple molecular targets, which play vital roles in a variety of cellular pathways. In some literatures, structurally modified curcumin derivatives have been compared with curcumin, and the former has enhanced biological activity, improved water solubility and stability. Therefore, the scope of this review is to report the most recently synthesized heterocyclic derivatives and to classify them according to their chemical structures. Several of the most important and effective compounds are reviewed by introducing different active groups into the β-diketone position to achieve better therapeutic efficacy and bioavailability.
Collapse
Affiliation(s)
- Hailong Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Si Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan, 422000, China
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
2
|
Atwan QS, Al-Ogaidi I. Enhancing the therapeutic potential of curcumin: a novel nanoformulation for targeted anticancer therapy to colorectal cancer with reduced miR20a and miR21 expression. Biomed Mater 2024; 19:025020. [PMID: 38215475 DOI: 10.1088/1748-605x/ad1dfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established method features three aspects that, to our knowledge, have not been formally verified: (1) use of a novel formula to incorporate curcumin, (2) use of all biocompatible biodegradable materials to produce this formula without leaving harmful residues, and (3) an incorporation process at temperatures of approximately 50 °C. The formula was prepared from lecithin (LE), and chitosan (CH) with an eco-friendly emulsifying agent and olive oil as the curcumin solvent. The formula was converted to nanoscale through ultrasonication and probe sonication at a frequency of 20 kHz. Transmission electron microscopy showed that the nano formula was spherical in shape with sizes ranging between 49.7 nm in diameter and negative zeta potentials ranging from 28 to 34 mV. Primers miR20a and miR21 were designed for molecular studies. Nearly complete curcumin with an encapsulation efficiency of 91.1% was established using a straight-line equation. The nano formula incorporated with curcumin was used to prepare formulations that exhibited anticancer activities. The apoptosis pathway in cancer cells was activated by the minimum inhibitory concentration of the nano formula. These findings suggest the potential of this nanoformulation as an effective and selective cancer treatment that does not affect the normal cells.
Collapse
Affiliation(s)
- Qusay S Atwan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Al-Ogaidi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Studies on anti-colon cancer potential of nanoformulations of curcumin and succinylated curcumin in mannosylated chitosan. Int J Biol Macromol 2023; 235:123827. [PMID: 36858085 DOI: 10.1016/j.ijbiomac.2023.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Colon cancer (CRC) is the second leading cause of death and the third most diagnosed cancer worldwide. Although curcumin (CUR) has demonstrated a potent anticancer activity, it is characterized by its poor solubility, low bioavailability, and instability. This study is a projection from a previous investigation where CUR and succinylated CUR (CUR.SA) were separately encapsulated in mannosylated-chitosan nanoparticles (CM-NPs) to form CUR-NPs and CUR.SA-NPs, respectively. Here, we aim to assess the anti-CRC activity of these two nanoformulations. Cytotoxicity studies using CCK-8 assay indicated that both CUR-NPs and CUR.SA-NPs have a dose and time-dependent toxicity towards CRC human cell-lines (HCT116 and SW480), and more cytotoxic compared to free CUR or CUR-SA in a time-dependent manner. A significant induction of early and late apoptosis in the CUR-NPs and CUR.SA-NPs treated CRC cell lines compared to untreated cells was observed. Western blotting analyses confirmed the induction of apoptosis through activation of Caspase signaling compared to untreated cells. Based on the physicochemical properties of CUR-NPs and CUR.SA-NPs along with the data from the in vitro studies, we may conclude these nanoparticle formulations hold very promising attributes, worthy of further investigations for its role in the management of CRC.
Collapse
|
4
|
Costa RF, Turones LC, Cavalcante KVN, Rosa Júnior IA, Xavier CH, Rosseto LP, Napolitano HB, Castro PFDS, Neto MLF, Galvão GM, Menegatti R, Pedrino GR, Costa EA, Martins JLR, Fajemiroye JO. Heterocyclic Compounds: Pharmacology of Pyrazole Analogs From Rational Structural Considerations. Front Pharmacol 2021; 12:666725. [PMID: 34040529 PMCID: PMC8141747 DOI: 10.3389/fphar.2021.666725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 01/09/2023] Open
Abstract
Low quality of life and life-threatening conditions often demand pharmacological screening of lead compounds. A spectrum of pharmacological activities has been attributed to pyrazole analogs. The substitution, replacement, or removal of functional groups on a pyrazole ring appears consistent with diverse molecular interactions, efficacy, and potency of these analogs. This mini-review explores cytotoxic, cytoprotective, antinociceptive, anti-inflammatory, and antidepressant activities of some pyrazole analogs to advance structure-related pharmacological profiles and rational design of new analogs. Numerous interactions of these derivatives at their targets could impact future research considerations and prospects while offering opportunities for optimizing therapeutic activity with fewer adverse effects.
Collapse
Affiliation(s)
| | - Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Keilah Valéria Naves Cavalcante
- Center for Neuroscience and Cardiovascular Research, Department of Physiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Ismael Aureliano Rosa Júnior
- Universitary Center of Anápolis, UniEvangélica, Anápolis, Brazil
- Institute of Science, Technology and Quality (ICTQ), Anápolis, Brazil
| | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Hamilton Barbosa Napolitano
- Universitary Center of Anápolis, UniEvangélica, Anápolis, Brazil
- Theoretical and Structural Chemistry Group, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | - Marcos Luiz Ferreira Neto
- Laboratory of Electrophysiology and Cardiovascular Physiology, Departament of Physiology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gustavo Mota Galvão
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Gustavo Rodrigues Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
5
|
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res 2021; 166:105489. [PMID: 33588007 DOI: 10.1016/j.phrs.2021.105489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Nv Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
6
|
Pham VTB, Nguyen TV, Nguyen HV, Nguyen TT, Hoang HM. Curcuminoids versus Pyrazole‐Modified Analogues: Synthesis and Cytotoxicity against HepG2 Cancer Cell Line. ChemistrySelect 2020. [DOI: 10.1002/slct.202003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Van Thi Bich Pham
- Department of Chemistry Nong Lam University Linh Trung Ward, Thu Duc district, Ho Chi Minh City 700000 Vietnam
| | - Tien Vinh Nguyen
- Department of Chemical Technology Ho Chi Minh City University of Technology and Education Vo Van Ngan 01, Linh Chieu Ward, Thu Duc District Ho Chi Minh City 700000 Vietnam
| | - Hien Van Nguyen
- Department of Chemistry Nong Lam University Linh Trung Ward, Thu Duc district, Ho Chi Minh City 700000 Vietnam
| | - Triet Thanh Nguyen
- Department of Traditional Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City 217 Hong Bang, Ward 11 District 5, Ho Chi Minh City 70000 Vietnam
| | - Hao Minh Hoang
- Department of Chemical Technology Ho Chi Minh City University of Technology and Education Vo Van Ngan 01, Linh Chieu Ward, Thu Duc District Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
7
|
Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020; 204:112607. [PMID: 32721784 DOI: 10.1016/j.ejmech.2020.112607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
In the present scenario, there has been a lot of consideration toward the field of free radical chemistry. Free radicals responsive oxygen species are produced by different endogenous frameworks, exposure to various physicochemical conditions, radiation, toxins, metabolized drug by-product, and pathological states. On the off chance that free radical overpowers the body's capacity, it generates a condition known as oxidative stress, which can alter physiological conditions of the body and results in several diseases. For appropriate physiological function, it is necessary to have a proper balance between free radicals and antioxidants. Antioxidants chemically inhibit the oxidation process; they are also known as free radical scavengers. For tackling the problem of oxidative stress application of an external source of antioxidant is helpful. A lot of antioxidants of natural, semi-synthetic and synthetic origin are in use, with time search of more effective, nontoxic, safe antioxidant is intensified. The present review, discuss different synthetic derivatives bearing various heterocyclic scaffolds as radical scavengers.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
8
|
Khatun B, Baishya P, Ramteke A, Maji TK. Study of the complexation of structurally modified curcumin with hydroxypropyl beta cyclodextrin and its effect on anticancer activity. NEW J CHEM 2020. [DOI: 10.1039/c9nj04408f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aims at modifying curcumin to curcumin pyrazole and complexing it with HPβCD employing a simple protocol to improve curcumin's chemical–physical properties and biological activities.
Collapse
Affiliation(s)
- Bably Khatun
- Department of Chemical Sciences
- Tezpur University
- Napaam
- Tezpur
- India
| | - Pitambar Baishya
- Department of Molecular Biology & Biotechnology
- Tezpur University
- Napaam
- Tezpur
- India
| | - Anand Ramteke
- Department of Molecular Biology & Biotechnology
- Tezpur University
- Napaam
- Tezpur
- India
| | - T. K. Maji
- Department of Chemical Sciences
- Tezpur University
- Napaam
- Tezpur
- India
| |
Collapse
|
9
|
|
10
|
Mishra S, Patel S, Halpani CG. Recent Updates in Curcumin Pyrazole and Isoxazole Derivatives: Synthesis and Biological Application. Chem Biodivers 2019; 16:e1800366. [PMID: 30460748 DOI: 10.1002/cbdv.201800366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Curcumin is an admired, plant-derived compound that has been extensively investigated for diverse range of biological activities, but the use of this polyphenol is limited due to its instability. Chemical modifications in curcumin are reported to seize this limitation; such efforts are intensively performed to discover molecules with similar but improved stability and better properties. Focal points of these reviews are synthesis of stable pyrazole and isoxazole analogs of curcumin and application in various biological systems. This review aims to emphasize the latest evidence of curcumin pyrazole analogs as a privileged scaffold in medicinal chemistry. Manifold features of curcumin pyrazole analogs will be summarized herein, including the synthesis of novel curcumin pyrazole analogs and the evaluation of their biological properties. This review is expected to be a complete, trustworthy and critical review of the curcumin pyrazole analogs template to the medicinal chemistry community.
Collapse
Affiliation(s)
- Satyendra Mishra
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Sejal Patel
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Chandni G Halpani
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| |
Collapse
|
11
|
Theppawong A, Van de Walle T, Grootaert C, Van Hecke K, Catry N, Desmet T, Van Camp J, D'hooghe M. Synthesis of Non-Symmetrical Nitrogen-Containing Curcuminoids in the Pursuit of New Anticancer Candidates. ChemistryOpen 2019; 8:236-247. [PMID: 30847262 PMCID: PMC6392825 DOI: 10.1002/open.201800287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/05/2019] [Indexed: 01/03/2023] Open
Abstract
Curcumin is known to display pronounced anticancer effects and a variety of other biological activities. However, the low bioavailability and fast metabolism of this molecule present an issue of concern with respect to its medicinal applications. To address this issue, structural modifications of the curcumin scaffold can be envisioned as a strategy to improve both the solubility and stability of this chemical entity, without compromising its biological activities. Previous work in our group targeted the synthesis of symmetrical azaheteroaromatic curcuminoids, which showed better solubility and cytotoxicity profiles compared to curcumin. In continuation of that work, we now focused on the synthesis of non-symmetrical nitrogen-containing curcuminoids bearing both a phenolic and an azaheteroaromatic moiety. In that way, we aimed to combine good solubility, antioxidant potential and cytotoxic properties into one molecule. Some derivatives were selected for further chemical modification of their rather labile β-diketone scaffold to the corresponding pyrazole moiety. In this way, thirteen new non-symmetrical aza-aromatic curcuminoids and four pyrazole-based analogues were successfully synthesized in a yield of 11-69 %. All newly synthesized analogues were evaluated for their antioxidant properties, reactive oxygen species (ROS) production, water solubility and anticancer activities. Several novel derivatives displayed good cytotoxicity profiles compared to curcumin, in combination with an improved water solubility and stability, and were thus identified as potential hit scaffolds for further optimization studies.
Collapse
Affiliation(s)
- Atiruj Theppawong
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Faculty of ScienceGhent UniversityKrijgslaan 281, S3B-9000GhentBelgium
| | - Nathalie Catry
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Tom Desmet
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent University Coupure Links 653, 9000GhentBelgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| |
Collapse
|
12
|
Banuppriya G, Sribalan R, Fathima SAR, Padmini V. Synthesis of β-Ketoamide Curcumin Analogs for Anti-Diabetic and AGEs Inhibitory Activities. Chem Biodivers 2018; 15:e1800105. [PMID: 29752771 DOI: 10.1002/cbdv.201800105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Two different series of novel β-ketoamide curcumin analogs enriched in biological activities have been synthesized. The synthesized compounds were screened for their in vitro anti-diabetic and AGEs inhibitory activities and exhibited potent to good anti-diabetic and AGEs inhibitory activities. The molecular docking study was also performed with the α-amylase enzyme.
Collapse
Affiliation(s)
- Govindharasu Banuppriya
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Rajendran Sribalan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | - Vediappen Padmini
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
13
|
Banuppriya G, Shakambari G, Sribalan R, Varalakshmi P, Padmini V. Evaluation of Anticancer Activity of Water-Soluble Curcumin through the Induction of Apoptosis by p53 and p21 Modulation. ChemistrySelect 2018. [DOI: 10.1002/slct.201800217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Govindharasu Banuppriya
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University, Madurai; Tamil Nadu India
| | - Ganeshan Shakambari
- Department of Molecular Microbiology; School of Biotechnology; Madurai Kamaraj University, Madurai; Tamil Nadu India
| | - Rajendran Sribalan
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University, Madurai; Tamil Nadu India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology; School of Biotechnology; Madurai Kamaraj University, Madurai; Tamil Nadu India
| | - Vediappen Padmini
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University, Madurai; Tamil Nadu India
| |
Collapse
|