1
|
Zong LP, Chen X, Zhu D, Li XJ, Li F, Cosnier S, Zhang XJ, Marks RS, Shan D. Schiff Base Complexes with Covalently Anchored Luminophores: Self-Enhanced Electrochemiluminescence Detection of Neomycin. ACS Sens 2022; 7:3085-3093. [PMID: 36222744 DOI: 10.1021/acssensors.2c01425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel electrochemiluminescence (ECL) amplification strategy was established aiming to overcome the inherent shortcomings of the current oxygen (O2) coreactant ECL systems. Macrocyclic Schiff base Fe complexes were rationally designed as a novel integrated ECL emitter by iminium linkage between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and 1,10-phenanthroline-2,9-dicarbaldehyde (PDL) and postmetalation of the macrocyclic Schiff base. Covalently combining luminophore ABEI with a catalytic center endowed the novel ECL emitter with both remarkable redox electrocatalytic properties and significantly enhanced ECL efficiency. The high content of ferrous iron and the dominantly active low-spin Fe state greatly contributed to the inherent catalytic activity for O2 activation. The rational modification of luminophore optimized the spatial distribution and simultaneously shortened the species transport distance of coreactant radicals generated in situ from dissolved O2, resulting in significantly self-enhanced ECL efficiency. Neomycin, which posed a growing threat to aquatic biodiversity and environmental safety, as the model antibiotic was successfully detected with a detection limit of 0.21 pM (S/N = 3), clarifying a promising application prospect of this new luminophore-embedded ECL amplification strategy in biological analysis and environmental monitoring.
Collapse
Affiliation(s)
- Li-Ping Zong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Xiaozhong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Dunru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, P. R. China
| | - Xi-Jie Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, GrenobleF-38000, France
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen518060, P. R. China
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| |
Collapse
|