1
|
Prasad Raiguru B, Panda J, Mohapatra S, Nayak S. Recent developments in the synthesis of hybrid antimalarial drug discovery. Bioorg Chem 2023; 139:106706. [PMID: 37406519 DOI: 10.1016/j.bioorg.2023.106706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this 21st century, Malaria remains a global burden and causes massive economic trouble to disease-endemic nations. The control and eradication of malaria is a major challenge that requires an urgent need to develop novel antimalarial drugs. To overcome the aforementioned situation, several researchers have given significant effort to develop hybrid antimalarial agents in the search for new antimalarial drugs. Hence, we have summarized those developments of hybrid antimalarial agents from 2017 to till date. This review illustrates the current progress in the recent synthesis of hybrid antimalarial agents along with focusing on their antimalarial evaluation to find the most potent hybrids. This present mini-review will also be useful for the scientific community for the development of new antimalarial drugs to eradicate malaria.
Collapse
Affiliation(s)
| | - Jasmine Panda
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack 753003, India
| |
Collapse
|
2
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
3
|
Bhale PS, Chavan HV, Shringare SN, Khedkar VM, Tigote RM, Mali NN, Jadhav TD, Kamble NB, Kolat SP, Bandgar BP, Patil HS. Design, synthesis of anticancer and anti-inflammatory 4-(1-methyl-1 H-indol-3-yl)-6-(methylthio) pyrimidine-5-carbonitriles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2048860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pravin S. Bhale
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, P. A. H. Solapur University, Solapur, India
- Department of Chemistry, Yeshwantrao Chavan Mahavidyalaya, Tuljapur, Dist. Osmanabad, India
| | - Hemant V. Chavan
- Department of Chemistry, A. S. P. College (Autonomous), Devrukh, Dist. Ratnagiri, India
| | - Sadanand N. Shringare
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, P. A. H. Solapur University, Solapur, India
| | | | - Radhakrishna M. Tigote
- Department of Chemistry, Sub-Campus, Dr. Babasaheb Ambedkar Marathwada University, Osmanabad, India
| | - Nikita N. Mali
- Department of Chemistry, Sub-Campus, Dr. Babasaheb Ambedkar Marathwada University, Osmanabad, India
| | - Tukaram D. Jadhav
- Department of Chemistry, Sub-Campus, Dr. Babasaheb Ambedkar Marathwada University, Osmanabad, India
| | - Nitin B. Kamble
- Department of Chemistry, Sub-Campus, Dr. Babasaheb Ambedkar Marathwada University, Osmanabad, India
| | - Swati P. Kolat
- Department of Chemistry, Bharatiya Jain Sanghatana’s Arts, Science and Commerce College, Wagholi, Pune, India
| | - Babasaheb P. Bandgar
- Medicinal Chemistry Research Laboratory, School of Chemical Sciences, P. A. H. Solapur University, Solapur, India
| | - Harshal S. Patil
- Division of Organic Chemistry, National Chemical Laboratory, Pune, India
- Department of Chemistry, Moreshwar College, Bhokardan, Dist. Jalna, India
| |
Collapse
|
4
|
Huang W, Ding J, Wan H, Guan G. Facile Synthesis of 2‐Amino‐4,6‐dimethoxypyrimidine over Lewis Acidic Ionic Liquid Catalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202001482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wu Huang
- College of Chemical EngineeringState Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech University Nanjing 210009 P.R. China
| | - Jing Ding
- College of Chemical EngineeringState Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech University Nanjing 210009 P.R. China
| | - Hui Wan
- College of Chemical EngineeringState Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech University Nanjing 210009 P.R. China
| | - Guofeng Guan
- College of Chemical EngineeringState Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech University Nanjing 210009 P.R. China
| |
Collapse
|
5
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
6
|
Nqoro X, Tobeka N, Aderibigbe BA. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules 2017; 22:molecules22122268. [PMID: 29257067 PMCID: PMC6149725 DOI: 10.3390/molecules22122268] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Naki Tobeka
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|