1
|
Sagadevan A, Murugesan K, Bakr OM, Rueping M. Copper nanoclusters: emerging photoredox catalysts for organic bond formations. Chem Commun (Camb) 2024; 60:13858-13866. [PMID: 39530552 DOI: 10.1039/d4cc04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advancements in fine chemical synthesis and drug discovery continuously demand the development of new and more efficient catalytic systems. In this regard, numerous transition metal-based catalysts have been developed and successfully applied in industrial processes. However, the need for innovative catalyst systems to further enhance the efficiency of chemical transformations and industrial applications persists. Metal nanoclusters (NCs) represent a distinct class of ultra-small nanoparticles (<3 nm) characterized by a precise number of metal atoms coordinated with a defined number of ligands. This structure confers abundant unsaturated active sites and unique electronic and optical properties, setting them apart from conventional nanoparticles or bulk metals. The well-defined structure and monodisperse nature of NCs make them particularly attractive for catalytic applications. Among these, copper-based nanoclusters have emerged as versatile and sustainable catalysts for challenging organic bond-forming reactions. Their unique properties, including natural abundance, accessible oxidation states, diverse ligand architectures, and strong photophysical characteristics, contribute to their growing prominence in this field. In this review, we discuss the photocatalytic activities of Cu-based nanoclusters, focusing on their applications in cross-coupling reactions (C-C and C-N), click reactions, multicomponent couplings, and oxidation reactions.
Collapse
Affiliation(s)
- Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Zhu T, Zhan W, Fan W, Zhang X. Research on Synthesis, Structure, and Catalytic Performance of Tetranuclear Copper(I) Clusters Supported by 2-Mercaptobenz-zole-Type Ligands. Molecules 2024; 29:4228. [PMID: 39275077 PMCID: PMC11396812 DOI: 10.3390/molecules29174228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Tetrahedral copper(I) clusters [Cu4(MBIZ)4(PPh3)2] (2), [Cu4(MBOZ)4(PPh3)4] (6) (MBIZ = 2-mercaptobenzimidazole, MBOZ = 2-mercaptobenzoxazole) were prepared by regulation of the copper-thiolate clusters [Cu6(MBIZ)6] (1) and [Cu8(MBOZ)8I]- (5) with PPh3. With the presence of iodide anion, the regulation provided the iodide-containing clusters [CuI4(MBIZ)3(PPh3)3I] (3) and [CuI4(MBOZ)3(PPh3)3I] (7). The cyclic voltammogram of 3 in MeCN (0.1 M nBu4NPF6, 298 K) at a scan rate of 100 mV s-1 shows two oxidation processes at Epa = +0.11 and +0.45 V with return waves observed at Epc = +0.25 V (vs. Fc+/Fc). Complex 3 has a higher capability to lose and gain electrons in the redox processes than complexes 2, 4, 4', 6, and 7. Its thermal stability was confirmed by thermogravimetric analysis. The catalytic performance of 3 was demonstrated by the catalytic transformation of iodobenzenes to benzonitriles using AIBN as the cyanide source. The nitrile products show potential applications in the preparation of 1,3,5-triazine compounds for organic fluorescence materials.
Collapse
Affiliation(s)
- Tingyu Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wangyuan Zhan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
3
|
Luo A, Zhou H, Hua Q, An Y, Ma H, Zhao X, Yang K, Hu YJ. Development of the Inverse Sonogashira Reaction for DEL Synthesis. ACS Med Chem Lett 2023; 14:270-277. [PMID: 36923912 PMCID: PMC10009795 DOI: 10.1021/acsmedchemlett.2c00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
An efficient approach for aryl acetylene DNA-encoded library (DEL) synthesis was developed in this study by transition-metal-mediated inverse Sonogashira reaction of 1-iodoalkyne with boronic acid under ambient conditions, with moderate to excellent conversions and broad substrate adaptability for the first time. Compared to palladium-phosphine, copper iodide performed better in the on-DNA inverse Sonogashira reaction. Interestingly, substrate diversity can be enhanced by first interrogating coupling reagents under copper-promoted conditions, and then revalidating them under palladium-facilitated conditions for those reagents which failed under the former. This complementary validation strategy is particularly well-fitted to any DEL validation studies.
Collapse
Affiliation(s)
- Ayun Luo
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Hongxia Zhou
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Qini Hua
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Yufang An
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Hangke Ma
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Xue Zhao
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| | - Kexin Yang
- Pharmaron
Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yun Jin Hu
- Pharmaron
(Ningbo) Technology Development Co., Ltd., No. 800 Bin-Hai Fourth Road, Hangzhou Bay New Zone, Ningbo 315336, P. R. China
| |
Collapse
|
4
|
Patra I, Abdul Rida Musa D, Solanki R, Fakri Mustafa Y, Ziyatovna Yakhshieva Z, Hadi JM, Kazemnejadi M. Introduction of versatile and recyclable network poly (ionic liquid)s as an efficient solvent with desired properties for application in C-C cross-coupling reactions. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Sheikh S, Nasseri MA, Allahresani A, Varma RS. Copper adorned magnetic nanoparticles as a heterogeneous catalyst for Sonogashira coupling reaction in aqueous media. Sci Rep 2022; 12:17986. [PMID: 36289249 PMCID: PMC9606120 DOI: 10.1038/s41598-022-22567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
A nanomagnetic hydrophilic heterogeneous copper catalyst, termed γ-Fe2O3@PEG@PAMAM G0-Cu, has been successfully prepared and characterized using FT-IR, XRD, FE-SEM, TEM, EDX, mapping, TGA/DTG, VSM and ICP analyses. The catalyst displayed excellent activity for the palladium-free Sonogashira cross coupling reaction of various aryl iodides and bromides with phenylacetylene derivatives in pure water. The presence of polyethylene glycol coupled with hydrophilic character of the Cu-catalyst adorned on γ-Fe2O3 MNPs provides the ready dispersion of the catalyst particles in water, leading to higher catalytic performance as well as facile catalyst recovery via simple magnetic decantation. The recovered catalyst was reused for at least six successive runs with little reduction in its catalytic activity and any noticeable changes in its structure. The use of water as a green solvent, without requiring any additive or organic solvent, as well as the exploitation of abundant and low-cost copper catalyst instead of expensive Pd catalyst along with the catalyst recovery and scalability, make this method favorable from environmental and economic points of view for the Sonogashira coupling reaction.
Collapse
Affiliation(s)
- Safoora Sheikh
- grid.411700.30000 0000 8742 8114Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P. O. Box 97175-615, Birjand, Iran ,grid.7727.50000 0001 2190 5763Institut Für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Mohammad Ali Nasseri
- grid.411700.30000 0000 8742 8114Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P. O. Box 97175-615, Birjand, Iran
| | - Ali Allahresani
- grid.411700.30000 0000 8742 8114Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P. O. Box 97175-615, Birjand, Iran
| | - Rajender S. Varma
- grid.10979.360000 0001 1245 3953Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, ˇSlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
6
|
Kotovshchikov YN, Binyakovsky AA, Latyshev GV, Lukashev NV, Beletskaya IP. Copper-catalyzed deacetonative Sonogashira coupling. Org Biomol Chem 2022; 20:7650-7657. [PMID: 36134515 DOI: 10.1039/d2ob01267g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient Pd- and phosphine-free protocol for assembling internal alkynes from tertiary propargyl alcohols and (het)aryl halides has been developed. The proposed tandem approach includes the base-promoted retro-Favorskii fragmentation followed by Cu-catalyzed C(sp)-C(sp2) cross-coupling. The use of inexpensive reagents (e.g. a catalyst, additives, a base, and a solvent) and good functional group tolerance make the procedure practical and cost-effective. The synthetic utility of the method was demonstrated by a smooth alkynylation of vinyl iodides derived from natural steroidal hormones.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Artem A Binyakovsky
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
7
|
Seoane GA, Daher GM. Readily accessible azido-alkyne-functionalized monomers for the synthesis of cyclodextrin analogues using click chemistry. Org Biomol Chem 2022; 20:1690-1698. [DOI: 10.1039/d1ob02496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of linear and cyclic oligomers were synthesized starting from a suitable azido-alkyne monomer through click oligomerization. The synthesis of these monomers starting from bromobenzene features an enzymatic dihydroxylation...
Collapse
|
8
|
Sahu SK, Choudhury P, Behera PK, Bisoyi T, Sahu RR, Bisoyi A, Gorantla KR, Mallik BS, Mohapatra M, Rout L. An oxygen-bridged bimetallic [Cu–O–Se] catalyst for Sonogashira cross-coupling. NEW J CHEM 2022. [DOI: 10.1039/d1nj04485k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen bridged bimetallic CuSeO3·2H2O catalyst is used for Sonogashira cross-coupling under ligand free condition. Catalyst is free from palladium up to 0.2 ppm.
Collapse
Affiliation(s)
| | | | | | - Tanmayee Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Abinash Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Bhabani S. Mallik
- Department of Chemistry, IIT Hydrabad, Sangareddy, Medak-502285, Telangana, India
| | - Manoj Mohapatra
- Homi Bhaba National Institute, Anushakti Nagar, Bhaba Atomic Research Centre, Bombay-400085, India
| | - Laxmidhar Rout
- Department of Chemistry, Berhampur University, Odisha-760007, India
| |
Collapse
|
9
|
Dutta D, Sharma P, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Baruwa B, Bhattacharyya MK. Solvent-driven structural topologies in phenanthroline-based co-crystals of Zn( ii) involving fascinating infinite chair-like {[(bzH) 4Cl 2] 2−} n assemblies and unconventional layered infinite {bz-H 2O-Cl} n anion-water clusters: antiproliferative evaluation and theoretical studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj05234a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anticancer activities considering cell cytotoxicity, apoptosis and molecular docking have been explored in Zn(ii) co-crystals of phenanthroline involving infinite chair-like assemblies and unconventional layered infinite anion-water clusters.
Collapse
Affiliation(s)
- Debasish Dutta
- Department of Chemistry, Cotton University, Guwahati-781001, Assam, India
| | - Pranay Sharma
- Department of Chemistry, Cotton University, Guwahati-781001, Assam, India
| | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Miquel Barcelo-Oliver
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.7, 07122 Palma de Mallorca (Baleares), Spain
| | - Akalesh K. Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, India
| | - Bandita Baruwa
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati-781001, India
| | | |
Collapse
|
10
|
Highly efficient aqueous-phase Sonogashira coupling catalyzed by Pd-PEEPSI/PPh3 under aerobic condition. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01950-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Ghodsinia SSE, Akhlaghinia B, Jahanshahi R. Co3O4 nanoparticles embedded in triple-shelled graphitic carbon nitride (Co3O4/TSCN): a new sustainable and high-performance hierarchical catalyst for the Pd/Cu-free Sonogashira–Hagihara cross-coupling reaction in solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04466-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Shilpa T, Neetha M, Anilkumar G. Recent Trends and Prospects in the Copper‐Catalysed “on Water” Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Thomas Shilpa
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills Kottayam Kerala INDIA 686560
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills Kottayam Kerala INDIA 686560
- Advanced Molecular materials Research centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| |
Collapse
|
13
|
Shanmugam M, Sagadevan A, Charpe VP, Pampana VKK, Hwang KC. Cu 2 O Nanocrystals-Catalyzed Photoredox Sonogashira Coupling of Terminal Alkynes and Arylhalides Enhanced by CO 2. CHEMSUSCHEM 2020; 13:287-292. [PMID: 31476259 DOI: 10.1002/cssc.201901813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Herein the first visible-light-activated Sonogashira C-C coupling reaction at room temperature catalyzed by single-metal heterogeneous Cu2 O truncated nanocubes (Cu2 O TNCs) was developed. A wide variety of aryl halides and terminal alkynes worked well in this recyclable heterogeneous photochemical process to form the corresponding Sonogashira C-C coupling products in good yields. Mechanistic control studies indicated that CO2 enhances the formation of light-absorbing heterogeneous surface-bound CuI -phenylacetylide (λmax =472 nm), which further undergoes single-electron transfer with aryl iodides/bromides to enable Sonogashira C sp 2 -Csp bond formation. In contrast to literature-reported bimetallic TiO2 -containing nanoparticles as photocatalyst, this work avoided the need of cocatalysis by TiO2 . Single-metal CuI in Cu2 O TNCs was solely responsible for the observed C sp 2 -Csp coupling reactions under CO2 atmosphere.
Collapse
Affiliation(s)
- Munusamy Shanmugam
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, P.R. China
| | | | | | | | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, P.R. China
| |
Collapse
|
14
|
Murashkina AV, Mitrofanov AY, Beletskaya IP. Copper in Cross-Coupling Reactions: I. Sonogashira-Hagihara Reaction. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019100014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Albano G, Interlandi S, Evangelisti C, Aronica LA. Polyvinylpyridine-Supported Palladium Nanoparticles: A Valuable Catalyst for the Synthesis of Alkynyl Ketones via Acyl Sonogashira Reactions. Catal Letters 2019. [DOI: 10.1007/s10562-019-02959-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Mitrofanov AY, Beletskaya IP. Enhanced catalytic activity of CuI/diethoxyphosphoryl-1,10-phenanthrolines in ‘on water’ Cu-catalyzed Sonogashira reaction. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Mahmudov KT, Gurbanov AV, Guseinov FI, Guedes da Silva MFC. Noncovalent interactions in metal complex catalysis. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Nasseri MA, Alavi SA, Kazemnejadi M, Allahresani A. The CuFe2O4@SiO2@ZrO2/SO42−/Cu nanoparticles: an efficient magnetically recyclable multifunctional Lewis/Brønsted acid nanocatalyst for the ligand- and Pd-free Sonogashira cross-coupling reaction in water. RSC Adv 2019; 9:20749-20759. [PMID: 35515529 PMCID: PMC9065763 DOI: 10.1039/c9ra03406d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
Herein, the synthesis and application of copper-incorporated sulfated zirconium oxide supported on CuFe2O4 NPs (CuFe2O4@SiO2@ZrO2/SO42−/Cu NPs) as a novel Lewis/Brønsted acid nanocatalyst were studied for the Sonogashira C–C cross-coupling reaction. The fabricated CuFe2O4@SiO2@ZrO2/SO42−/Cu catalyst exhibited efficient activity for a large variety of aryl iodides/bromides and, most importantly, aryl chlorides in water and in the presence of NaOH as a base in short reaction times. The catalyst was fully characterized by FTIR, TG-DTG, VSM, XRD, EDX, FE-SEM and TEM analyses. A synergetic effect could be considered to have arisen from the various Lewis acid and Brønsted acid sites present in the catalyst. The efficient incorporation of copper into zirconia provided a robust highly stable hybrid, which prevented any metal leaching, whether from the magnetite moiety and/or Cu sites in the reaction mixture. Moreover, the catalyst was successfully recovered from the mixture by a simple external magnet and reused for at least 9 consecutive runs. Zero metal leaching, stability, consistency with a variety of substrates, fast performance, cost-effectiveness, environmental friendliness, and preparation with accessible and cheap materials are some of the advantages and highlights of the current protocol. A mild and green protocol was developed by immobilizing copper-incorporated sulfated zirconium oxide on CuFe2O4 as an efficient inorgano-nanocatalyst for the Sonogashira reaction.![]()
Collapse
Affiliation(s)
| | | | - Milad Kazemnejadi
- Department of Chemistry
- Faculty of Science
- University of Birjand
- Birjand
- Iran
| | - Ali Allahresani
- Department of Chemistry
- Faculty of Science
- University of Birjand
- Birjand
- Iran
| |
Collapse
|
19
|
Liori AA, Stamatopoulos IK, Papastavrou AT, Pinaka A, Vougioukalakis GC. A Sustainable, User-Friendly Protocol for the Pd-Free Sonogashira Coupling Reaction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800827] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aggeliki A. Liori
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens; Panepistimiopolis 15784 Athens Greece
| | - Ioannis K. Stamatopoulos
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens; Panepistimiopolis 15784 Athens Greece
| | - Argyro T. Papastavrou
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens; Panepistimiopolis 15784 Athens Greece
| | - Afroditi Pinaka
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens; Panepistimiopolis 15784 Athens Greece
| | - Georgios C. Vougioukalakis
- Laboratory of Organic Chemistry; Department of Chemistry; National and Kapodistrian University of Athens; Panepistimiopolis 15784 Athens Greece
| |
Collapse
|
20
|
Académie des Sciences Prizes: M. Taillefer, G. Masson, L. Peng, D. Matt / Horst Dietrich Hardt Prize: L. H. Gade / Yamada-Koga Prize: J.-E. Bäckvall. Angew Chem Int Ed Engl 2018; 57:2529-2530. [DOI: 10.1002/anie.201801303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Preise der Académie des Sciences: M. Taillefer, G. Masson, L. Peng, D. Matt / Horst-Dietrich-Hardt-Preis: L. H. Gade / Yamada-Koga-Preis: J.-E. Bäckvall. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|