1
|
Luo Y, Zhao M, Wang Y. Mechanism and Origin of Stereoselectivity of N-Heterocyclic Carbene (NHC)-Catalyzed Transformation Reaction of Benzaldehyde with o-QDM as Key Intermediate: A DFT Study. J Phys Chem A 2024; 128:6190-6198. [PMID: 39024177 DOI: 10.1021/acs.jpca.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
N-heterocyclic carbene (NHC)-bound ortho-quinodimethane, served as a nucleophile, has occupied an important position for constructing various all-carbon or heterocyclic compounds and attracted increasing attention for the functionalization of benzylic carbon of aromatic aldehydes, whereas the mechanistic studies on the generation and transformations of dienolate intermediate are rare. In the present study, the mechanism of activation/transformation of aldehyde catalyzed by NHC was theoretically studied using the density functional theory (DFT) method. Based on the calculations, the nucleophilic addition process is the stereoselectivity-determining step with RS-configured product being generated preferentially. Furthermore, non-covalent index (NCI) and atoms-in-molecules (AIM) analyses have been performed to disclose the origin of stereoselectivity, by which the larger number and stronger weak interactions are the key for stabilizing the low-energy transition state and thus leading to the stereoselectivity inducing.
Collapse
Affiliation(s)
- Yilu Luo
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Miao Zhao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital & Zhengzhou Children's Hospital, Zhengzhou 450018, Henan, P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
2
|
Sarkar D, Barik S, Shee S, Gonnade RG, Biju AT. NHC-Catalyzed Enantioselective Synthesis of Tetracyclic δ-Lactones by (4 + 2) Annulation of ortho-Quinodimethanes with Activated Ketones. Org Lett 2023; 25:7852-7857. [PMID: 37862445 DOI: 10.1021/acs.orglett.3c03076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The N-heterocyclic carbene (NHC)-catalyzed generation of ortho-quinodimethanes (o-QDMs) from 9H-fluorene-1-carbaldehydes followed by the interception with activated ketones resulting in the enantioselective synthesis of tetracyclic δ-lactones is presented. High diastereoselectivity of products, remote C(sp3)-H functionalization, broad substrate scope, and mild reaction conditions are the notable features of the present (4 + 2) annulation.
Collapse
Affiliation(s)
- Deeptanu Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Shilpa Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sayan Shee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rajesh G Gonnade
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
3
|
Mavroskoufis A, Lohani M, Weber M, Hopkinson MN, Götze JP. A (TD-)DFT study on photo-NHC catalysis: photoenolization/Diels-Alder reaction of acid fluorides catalyzed by N-heterocyclic carbenes. Chem Sci 2023; 14:4027-4037. [PMID: 37063806 PMCID: PMC10094231 DOI: 10.1039/d2sc04732b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
A comprehensive mechanistic study on the N-heterocyclic carbene (NHC) catalyzed photoenolization/Diels-Alder (PEDA) reaction of acid fluorides was performed in the framework of (time-dependent) density functional theory ((TD)-DFT). The 1,5-hydrogen atom transfer (1,5-HAT) during photoenolization of an ortho-toluoyl azolium salt was found to be feasible via, first, singlet excitation and photoenolization, and then, after crossing to the triplet manifold, populating a biradical dienol which allows for the formation of two ortho-quinodimethane (o-QDM) isomers due to a low rotational barrier. The (Z)-isomer is mostly unproductive through sigmatropic rearrangement back to the starting material while the (E)-isomer reacts in a subsequent concerted Diels-Alder reaction likely as the deprotonated dienolate. The experimentally observed diastereoselectivity is correctly predicted by theory and is determined by a more favorable endo trajectory in the cycloaddition step. These findings demonstrate that ortho-toluoyl azolium species exhibit similar photophysical properties as structurally related benzophenones, highlighting the unique ability of the NHC organocatalyst to transiently alter the excited state properties of an otherwise photoinactive carboxylic acid derivative, thereby expanding the scope of classical carbonyl photochemistry.
Collapse
Affiliation(s)
- Andreas Mavroskoufis
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstrasse 34-36 14195 Berlin Germany
| | - Manish Lohani
- Institut für Chemie und Biochemie, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Manuela Weber
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstrasse 34-36 14195 Berlin Germany
| | - Matthew N Hopkinson
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstrasse 34-36 14195 Berlin Germany
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Jan P Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| |
Collapse
|
4
|
Chen X, He P, Xia S, Cui L, Zhong G, Yang L. NHC-Activations on α-, β-, γ-, and Beyond. CHEM REC 2023:e202200279. [PMID: 36916715 DOI: 10.1002/tcr.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/27/2023] [Indexed: 03/15/2023]
Abstract
Over the recent decades, due to the special electronic characteristics and diverse reactivities, N-heterocyclic carbene (NHC) has received significant interest in organocatalyzed reactions. The formation of Breslow intermediates by NHC can convert into acyl anion equivalent, enolates, homoenolate, acyl azolium, and vinyl enolate etc., and the cycloaddition reactions of these species has attracted lots of attention. In this review, we focus on the summry of the development of NHC-activation of carbonyl carbon (or imine carbon) in situ, α-, β-, γ-, and beyond, and the cycloaddition reaction of these species.
Collapse
Affiliation(s)
- Xiaoyu Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Pengyu He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Siqi Xia
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lixin Cui
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, 315200, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Limin Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
5
|
Abrams JN. Design, Synthesis, and In Vitro Mitotic Evaluation of 3‐Amino‐Isoquinolinones as Anticancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason N. Abrams
- Department of Chemistry Texas A&M University Kingsville 700 University Blvd Kingsville TX 78363
| |
Collapse
|
6
|
Shen J, Zhang Y, Xue Y. Theoretical Insights into Enantioselective [3 + 2] Cycloaddition between Cinnamaldehyde and Cyclic N-Sulfonyl Trifluoromethylated Ketimine Catalyzed by N-Heterocyclic Carbene. J Phys Chem A 2022; 126:3124-3134. [PMID: 35549275 DOI: 10.1021/acs.jpca.2c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The density functional theory (DFT) method was used to investigate the mechanism and the origin of stereoselectivity of N-heterocyclic carbene (NHC)-catalyzed [3 + 2] cycloaddition between enals and cyclic imine N-sulfonyl trifluoromethyl ketimines at the M06-2X/SMD/6-311+G(d,p)//M06-2X/SMD/6-31G (d,p) level. The results show that the favorable reaction path consists of five steps: nucleophilic attack, proton transfer, the formation of the C-C bond, the tautomerism of the enol intermediate, the formation of the five-membered ring, and the regeneration of the catalyst. For the process of proton transfer, the base-assisted reaction can reduce the activation free energy and make the reaction easier to occur compared with the direct proton transfer process. The formation of the C-C bond is the crucial step of stereoselectivity, in which two chiral centers and four configurations of intermediates (RR/RS/SR/SS) were generated. The free energy barriers obtained and the noncovalent interaction analysis confirm that the dominant configuration is SS, becoming the final trans-type product observed in experiment. Furthermore, through the analyses of the conceptual DFT and natural atomic charges, it is revealed that NHC acts as a double catalyst, which can not only increase the nucleophilicity of reactants by Lewis base but also activate the C-H bond and promote the proton transfer process. The understanding of the mechanism obtained in this study should be helpful to the other organic catalytic reactions with high stereoselectivity.
Collapse
Affiliation(s)
- Jingyi Shen
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yan Zhang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
7
|
Wang JYJ, Blyth MT, Sherburn MS, Coote ML. Tuning Photoenolization-Driven Cycloadditions Using Theory and Spectroscopy. J Am Chem Soc 2022; 144:1023-1033. [PMID: 34991316 DOI: 10.1021/jacs.1c12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first broad spectrum investigation into the photoenolization/Diels-Alder (PEDA) sequence was carried out using M06-2X/6-31+G(d,p) in conjunction with SMD solvation and supported by experimental UV-vis spectroscopy. A test set of 20 prodienes was chosen to examine the role of the H atom acceptor group (substituted and unsubstituted carbonyl, thiocarbonyl, and imine), the H atom donor group, and bystander ring substituents. As reaction partners for the photogenerated dienes, a diverse test set of 20 dienophiles was examined, comprising electron rich, electron poor, neutral, strain activated, hydrocarbon, and heteroatom-containing molecules including CO2 and CO. A key finding of this work is the demonstration that the PEDA sequence of carbonyl based prodienes is tolerant of most substitution patterns. Another is that thiocarbonyl derivatives should behave analogously to the carbonyls but are likely to do so much more slowly, due to an inefficient intersystem crossing, an endothermic 1,5-hydrogen atom transfer (HAT) step, and a [1,5] sigmatropic H shift to regenerate the starting material that outcompetes the [4 + 2]cycloaddition. In contrast, the T1 state of the ortho-alkyl imines displays the incorrect orbital symmetry for 1,5-HAT and is correspondingly accompanied by higher barriers, even in the excited state. However, provided these barriers can be overcome, the remaining steps in the PEDA sequence are predicted to be facile. The Diels-Alder reaction is predicted to be of much broader scope than reported synthetic literature: while electron poor dienophiles are expected to be the most reactive partners, ethylene and electron rich alkenes should react at a synthetically useful rate. CO is predicted to undergo a facile (4 + 1)cheletropic addition instead of the normal [4 + 2]cycloaddition pathway. This unique photoenolization/cheletropic addition (PECA) sequence could provide metal-free access to benzannelated cyclopentanones.
Collapse
Affiliation(s)
- Jiao Yu J Wang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mitchell T Blyth
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
8
|
Sun F, Lu F, Song X, Wu W, Zhang K, Yu C, Li T, Wei D, Yao C. A combined experimental and computational study of NHC-catalyzed allylation of allenoate with MBH esters: new regiospecific and stereoselective access to 1,5-enyne. Org Chem Front 2022. [DOI: 10.1039/d1qo01083b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An NHC-catalyzed regiospecific allylation of α-substituted allenoates with MBH carbonates derived from aryl aldehyde furnished highly functionalized 1,5-enynes.
Collapse
Affiliation(s)
- Fang Sun
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Fangfang Lu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Xue Song
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Wenchao Wu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P R China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| |
Collapse
|
9
|
Li MM, Chen X, Deng Y, Lu J. Recent advances of N-heterocyclic carbenes in the applications of constructing carbo- and heterocyclic frameworks with potential biological activity. RSC Adv 2021; 11:38060-38078. [PMID: 35498096 PMCID: PMC9044055 DOI: 10.1039/d1ra06155k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
In recent years, N-heterocyclic carbenes (NHCs) have established themselves as a masterful and promising type of organocatalyst for the speedy construction of medicinally and biologically significant molecules from common and accessible small molecules. In particular, various cyclic scaffolds, including carbocycles and heterocycles, have been synthesized using NHCs via cycloaddition reaction. An exhaustive review focused on the chemistry of NHCs in these cyclic molecules has yet to be reported. In this contribution, a general picture of the utilization of NHCs in constructing twelve kinds of bioactive cyclic skeletons is firstly presented. We provide a systematic and comprehensive overview from the perspective of cycloaddition reactions; moreover, the limitations, challenges, and future prospects were discussed.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Xiaozhen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
- Institute of Integrated Bioinformedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education Shenzhen 518000 China
| |
Collapse
|
10
|
Wu S, Xu J, Deng R, Wang H, Chi YR, Zheng P. Carbene-Catalyzed Activation of Formyl-phenylacetic Esters for Access to Chiral Dihydroisoquinolinones. Org Lett 2021; 23:7513-7517. [PMID: 34533322 DOI: 10.1021/acs.orglett.1c02676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A carbene-catalyzed reaction to synthesize chiral dihydroisoquinolinones via an o-quinodimethane (o-QDM) intermediate is disclosed. o-QDM reacts with cyclic sulfonic imines via annulation to afford highly enantioenriched dihydroisoquinolinone products. ESI-HRMS studies suggest a stepwise Mannich addition and acylation reaction pathway, and the pathways of the catalytic and uncatalyzed background reactions are evaluated via DFT calculations.
Collapse
Affiliation(s)
- Shuquan Wu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Rui Deng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongling Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
11
|
Peng Q, Li SJ, Zhang B, Guo D, Lan Y, Wang J. N-Heterocyclic carbene-catalyzed enantioselective hetero-[10 + 2] annulation. Commun Chem 2020; 3:177. [PMID: 36703423 PMCID: PMC9814252 DOI: 10.1038/s42004-020-00425-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/22/2020] [Indexed: 01/29/2023] Open
Abstract
Higher-order cycloadditions are a powerful strategy for the construction of polycycles in one step. However, an efficient and concise version for the induction of asymmetry is lacking. N-heterocyclic carbenes are widely used organocatalysts for asymmetric synthesis and could be an ideal choice for enantioselective higher-order cycloadditions. Here, we report an enantioselective [10 + 2] annulation between catalytically formed aza-benzofulvene intermediates and trifluoromethyl ketone derivatives. This protocol exhibits a wide scope, high yields, and good ee values, reflecting a robust and efficient higher-order cycloaddition. Density functional theory calculations provide an accurate prediction of the reaction enantioselectivity, and in-depth insight to the origins of stereocontrol.
Collapse
Affiliation(s)
- Qiupeng Peng
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Shi-Jun Li
- grid.207374.50000 0001 2189 3846College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001 China
| | - Bei Zhang
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Donghui Guo
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Yu Lan
- grid.207374.50000 0001 2189 3846College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001 China ,grid.190737.b0000 0001 0154 0904School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030 China
| | - Jian Wang
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| |
Collapse
|
12
|
Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. N-Heterocyclic Carbene Catalyzed Photoenolization/Diels-Alder Reaction of Acid Fluorides. Angew Chem Int Ed Engl 2020; 59:3190-3194. [PMID: 31814280 PMCID: PMC7027522 DOI: 10.1002/anie.201914456] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 11/23/2022]
Abstract
The combination of light activation and N-heterocyclic carbene (NHC) organocatalysis has enabled the use of acid fluorides as substrates in a UVA-light-mediated photochemical transformation previously observed only with aromatic aldehydes and ketones. Stoichiometric studies and TD-DFT calculations support a mechanism involving the photoactivation of an ortho-toluoyl azolium intermediate, which exhibits "ketone-like" photochemical reactivity under UVA irradiation. Using this photo-NHC catalysis approach, a novel photoenolization/Diels-Alder (PEDA) process was developed that leads to diverse isochroman-1-one derivatives.
Collapse
Affiliation(s)
- Andreas Mavroskoufis
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Keerthana Rajes
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Paul Golz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Arush Agrawal
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Vincent Ruß
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Jan P. Götze
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Matthew N. Hopkinson
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
13
|
Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. Durch N‐heterocyclische Carbene katalysierte Photoenolisierungs‐Diels‐Alder‐Reaktion von Säurefluoriden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andreas Mavroskoufis
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Keerthana Rajes
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Paul Golz
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Arush Agrawal
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Vincent Ruß
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Jan P. Götze
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Matthew N. Hopkinson
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
14
|
Sun F, Yin T, Wang Y, Feng A, Yang L, Wu W, Yu C, Li T, Wei D, Yao C. A combined experimental and computational study of NHC-promoted desulfonylation of tosylated aldimines. Org Chem Front 2020. [DOI: 10.1039/c9qo01402k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NHC-catalyzed mild desulfonylation of tosylated aldimines provides efficient access to aryl nitriles with broad substrate scope. DFT calculations demonstrate that the reaction undergoes multiple stepwise processes.
Collapse
|
15
|
Yang X, Luo G, Zhou L, Liu B, Zhang X, Gao H, Jin Z, Chi YR. Enantioselective Indole N–H Functionalization Enabled by Addition of Carbene Catalyst to Indole Aldehyde at Remote Site. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03163] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Guoyong Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liejin Zhou
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang 550025, China
| | - Xiaolei Zhang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang 550025, China
| |
Collapse
|
16
|
Lee A, Zhu JL, Feoktistova T, Brueckner AC, Cheong PH, Scheidt KA. Carbene‐Catalyzed Enantioselective Decarboxylative Annulations to Access Dihydrobenzoxazinones and Quinolones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ansoo Lee
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Joshua L. Zhu
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Taisiia Feoktistova
- Department of ChemistryOregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | | | - Paul H.‐Y. Cheong
- Department of ChemistryOregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | - Karl A. Scheidt
- Department of ChemistryCenter for Molecular Innovation and Drug DiscoveryNorthwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
17
|
Lee A, Zhu JL, Feoktistova T, Brueckner AC, Cheong PHY, Scheidt KA. Carbene-Catalyzed Enantioselective Decarboxylative Annulations to Access Dihydrobenzoxazinones and Quinolones. Angew Chem Int Ed Engl 2019; 58:5941-5945. [PMID: 30843323 DOI: 10.1002/anie.201900600] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Indexed: 12/16/2022]
Abstract
A direct decarboxylative strategy for the generation of aza-o-quinone methides (aza-o-QMs) by N-heterocyclic carbene (NHC) catalysis has been discovered and explored. This process requires no stoichiometric additives in contrast with current approaches. Aza-o-QMs react with trifluoromethyl ketones through a formal [4+2] manifold to access highly enantioenriched dihydrobenzoxazin-4-one products, which can be converted to dihydroquinolones through an interesting stereoretentive aza-Petasis-Ferrier rearrangement sequence. Complementary dispersion-corrected density functional theory (DFT) studies provided an accurate prediction of the reaction enantioselectivity and lend further insight to the origins of stereocontrol. Additionally, a computed potential energy surface around the major transition structure suggests a concerted asynchronous mechanism for the formal annulation.
Collapse
Affiliation(s)
- Ansoo Lee
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joshua L Zhu
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Alexander C Brueckner
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Paul H-Y Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
18
|
Li S, Tang Z, Wang Y, Wang D, Wang Z, Yu C, Li T, Wei D, Yao C. NHC-Catalyzed Aldol-Like Reactions of Allenoates with Isatins: Regiospecific Syntheses of γ-Functionalized Allenoates. Org Lett 2019; 21:1306-1310. [DOI: 10.1021/acs.orglett.8b04082] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sha Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Ziwei Tang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Yang Wang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P R China
| | - Dan Wang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Zhanlin Wang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P R China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| |
Collapse
|
19
|
Sun F, Yin T, Feng A, Hu Y, Yu C, Li T, Yao C. Base-promoted regiodivergent allylation of N-acylhydrazones with Morita–Baylis–Hillman carbonates by tuning the catalyst. Org Biomol Chem 2019; 17:5283-5293. [DOI: 10.1039/c9ob00194h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A catalyst-controlled regiodivergent allylation reaction of N-acylhydrazones (NAHs) with Morita–Baylis–Hillman (MBH) carbonates has been developed, paving a new avenue for the diversification of NAH.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Materials Science
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials. Jiangsu Normal University
- Xuzhou
- P R China
| | - Tingrui Yin
- School of Chemistry and Materials Science
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials. Jiangsu Normal University
- Xuzhou
- P R China
| | - Anni Feng
- School of Chemistry and Materials Science
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials. Jiangsu Normal University
- Xuzhou
- P R China
| | - Yong Hu
- School of Chemistry and Materials Science
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials. Jiangsu Normal University
- Xuzhou
- P R China
| | - Chenxia Yu
- School of Chemistry and Materials Science
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials. Jiangsu Normal University
- Xuzhou
- P R China
| | - Tuanjie Li
- School of Chemistry and Materials Science
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials. Jiangsu Normal University
- Xuzhou
- P R China
| | - Changsheng Yao
- School of Chemistry and Materials Science
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials. Jiangsu Normal University
- Xuzhou
- P R China
| |
Collapse
|
20
|
Yang B, Gao S. Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem Soc Rev 2018; 47:7926-7953. [DOI: 10.1039/c8cs00274f] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent advances in Diels–Alder reactions involving o-QDMs, o-QMs and aza-o-QMs. The power and potential of this strategy in organic synthesis and natural product total synthesis is highlighted.
Collapse
Affiliation(s)
- Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|