1
|
Yang H, Tu C, Hao Y, Li Y, Wang J, Yang J, Zhang L, Zhang Y, Yu J. Near-infrared light-driven lab-on-paper cathodic photoelectrochemical aptasensing for di(2-ethylhexyl)phthalate based on AgInS 2/Cu 2O/FeOOH photocathode. Talanta 2024; 276:126193. [PMID: 38735244 DOI: 10.1016/j.talanta.2024.126193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is commonly released from plastics in aqueous environment, which can disrupt endocrine system and cause adverse effects on public health. There is a pressing need to highly sensitive detect DEHP. Herein, a near-infrared (NIR) light-driven lab-on-paper cathodic photoelectrochemical aptasensing platform integrated with AgInS2/Cu2O/FeOOH photocathode and "Y"-like ternary conjugated DNA nanostructure-mediated "ON-OFF" catalytic switching of hemin monomer-to-dimer was established for ultrasensitive DEHP detection. Profiting from the collaborative roles of the effective photosensitization of NIR-response AgInS2 and the fast hole extraction of FeOOH, the NIR light-activated AgInS2/Cu2O/FeOOH photocathode generated a markedly enhanced photocathodic signal. The dual hemin-labelled "Y"-like ternary conjugated DNA nanostructures made the hemin monomers separated in space and they maintained highly active to catalyze in situ generation of electron acceptors (O2). The hemin monomers were relocated in close proximity with the help of target-induced allosteric change of DNA nanostructures, which could spontaneously dimerize into catalytically inactive hemin dimers and fail to mediate electron acceptors generation, resulting in a decreased photocathodic signal. Therefore, the ultrasensitive DEHP detection was realized with a linear response range of 1 pM-500 nM and a detection limit of 0.39 pM. This work rendered a promising prototype to construct powerful paper-based photocathodic aptasensing system for sensitive and accurate screening of DEHP in aqueous environment.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, PR China
| | - Chuanyi Tu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuxin Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiajie Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
2
|
Lin Y, Sun Y, Dai Y, Zhu X, Liu H, Han R, Gao D, Luo C, Wang X. A chemiluminescence assay for determination of lysozyme based on the use of magnetic alginate-aptamer composition and hemin@HKUST-1. Mikrochim Acta 2020; 187:281. [PMID: 32314017 DOI: 10.1007/s00604-020-04254-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Lysozyme aptamer-functionalized magnetic alginate hydrogel was prepared for separation and enrichment of lysozyme. Luminol-labeled aptamer was used as a signal tag, and the signal tag was adsorbed on magnetic carboxylated carbon nanotubes based on the π-interaction. When lysozyme was added, the aptamer specifically binds to the lysozyme, causing the signal tag to detach from the magnetic carboxylated carbon nanotubes. When the aptamer/lysozyme complex bound to the complementary single strand of aptamer on the hemin@HKUST-1, lysozyme was released. The released lysozyme can be recombined with the signal tag adsorbed on the magnetic carboxylated carbon nanotube, allowing more signal tag to be dispersed into the solution. Determination of lysozyme was achieved by releasing the luminol-labeled aptamer to generate a chemiluminescence signal at a wavelength of 425 nm. It was proved by experiments that the synthesized hemin@HKUST-1 had a strong catalytic effect on the luminol-NaOH-H2O2 system. The chemiluminescence signal was increased nearly 100 times. The complementary pairing allowed the luminol to be immobilized on the surface of hemin@HKUST-1. The generation and consumption of short-lived reactive oxygen species were concentrated on the surface of the MOFs, which improves the chemiluminescence efficiency. The introduction of hemin@HKUST-1 and DNA solved the defects of chemiluminescence analysis. The chemiluminescence assay was able to detect lysozyme with linear range of 1.05 × 10-6 U∙mg-1 (6.00 × 10-13 mol∙L-1)-1.25 × 10-2 U∙mg-1 (7.14 × 10-9 mol∙L-1); the detection limit was 3.50 × 10-7 U∙mg-1 (2.00 × 10-13 mol∙L-1) (R2 = 0.99). The recovery of lysozyme in spiked saliva samples was 97.4-102.8%. Graphical abstract Schematic presentation of chemiluminescence assay. Lysozyme (Lys) was captured by aptamer-modified magnetic sodium alginate (M-Alg-Apt); Glycine (pH = 2) as eluent for Lys. Luminol-modified Apt (Apt-luminol) as signal tag; magnetic carbon nanotubes (MCNTs) as adsorption matrix; cDNA was complementary to Apt; hemin@HKUST-1 as catalyst.
Collapse
Affiliation(s)
- Yanna Lin
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiaodong Zhu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Rui Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dandan Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|