Banga I, Paul A, Muthukumar S, Prasad S. Characterization of Room-Temperature Ionic Liquids to Study the Electrochemical Activity of Nitro Compounds.
SENSORS (BASEL, SWITZERLAND) 2020;
20:E1124. [PMID:
32092938 PMCID:
PMC7070553 DOI:
10.3390/s20041124]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023]
Abstract
Over the past few years, room-temperature ionic liquid (RTIL) has evolved as an important solvent-cum-electrolyte because of its high thermal stability and excellent electrochemical activity. Due to these unique properties, RTILs have been used as a solvent/electrolyte/mediator in many applications. There are many RTILs, which possess good conductivity as well as an optimal electrochemical window, thus enabling their application as a transducer for electrochemical sensors. Nitroaromatics are a class of organic compounds with significant industrial applications; however, due to their excess use, detection is a major concern. The electrochemical performance of a glassy carbon electrode modified with three different RTILs, [EMIM][BF4], [BMIM][BF4] and [EMIM][TF2N], has been evaluated for the sensing of two different nitroaromatic analytes: 2,6-dinitrotoluene (2,6 DNT) and ethylnitrobenzene (ENB). Three RTILs have been chosen such that they have either a common anion or cation amongst them. The sensory response has been measured using square wave voltammetry (SQWV). We found the transducing ability of [EMIM][BF4] to be superior compared to the other two RTILs. A low limit of detection (LOD) of 1 ppm has been achieved with a 95% confidence interval for both the analytes. The efficacy of varying the cationic and anionic species of RTIL to obtain a perfect combination has been thoroughly investigated in this work, which shows a novel selection process of RTILs for specific applications. Moreover, the results obtained from testing with a glassy carbon electrode (GCE) have been replicated using a miniaturized sensor platform that can be deployed easily for on-site sensing applications.
Collapse