1
|
Ballinas-Indilí R, Nicolás-Vázquez MI, Martínez J, Ramírez-Apan MT, Álvarez-Toledano C, Toscano A, Hernández-Rodríguez M, Mera Jiménez E, Miranda Ruvalcaba R. Synthesis, Cytotoxic Activity and In Silico Study of Novel Dihydropyridine Carboxylic Acids Derivatives. Int J Mol Sci 2023; 24:15414. [PMID: 37895094 PMCID: PMC10607468 DOI: 10.3390/ijms242015414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
To aid the possible prevention of multidrug resistance in tumors and cause lower toxicity, a set of sixteen novel dihydropyridine carboxylic acids derivatives 3a-p were produced; thus, the activation of various ynones with triflic anhydride was performed, involving a nucleophilic addition of several bis(trimethylsilyl) ketene acetals, achieving good yields requiring easy workup. The target molecules were unequivocally characterized by common spectroscopic methods. In addition, two of the tested compounds (3a, and 3b) were selected to perform in silico studies due to the highest cytotoxic activity towards the HCT-15 cell line (7.94 ± 1.6 μM and 9.24 ± 0.9 μM, respectively). Employing theoretical calculations with density functional theory (DFT) using the B3LYP/6-311++G(d,p) showed that the molecular parameters correlate adequately with the experimental results. In contrast, predictions employing Osiris Property Explorer showed that compounds 3a and 3b present physicochemical characteristics that would likely make it an orally active drug. Moreover, the performance of Docking studies with proteins related to the apoptosis pathway allowed a proposal of which compounds could interact with PARP-1 protein. Pondering the obtained results (synthesis, in silico, and cytotoxic activity) of the target compounds, they can be judged as suitable antineoplastic agent candidates.
Collapse
Affiliation(s)
- Ricardo Ballinas-Indilí
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (R.B.-I.); (M.I.N.-V.); (J.M.)
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (R.B.-I.); (M.I.N.-V.); (J.M.)
| | - Joel Martínez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (R.B.-I.); (M.I.N.-V.); (J.M.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; (M.T.R.-A.); (C.Á.-T.); (A.T.)
| | - Cecilio Álvarez-Toledano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; (M.T.R.-A.); (C.Á.-T.); (A.T.)
| | - Alfredo Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; (M.T.R.-A.); (C.Á.-T.); (A.T.)
| | - Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.H.-R.); (E.M.J.)
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.H.-R.); (E.M.J.)
| | - René Miranda Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico; (R.B.-I.); (M.I.N.-V.); (J.M.)
| |
Collapse
|
2
|
Soares LTXMG, Basso MAF, Dos Santos CMR, Ali A, Vasconcelos LG, Dall'Oglio EL, Sampaio OM, Vieira LCC. Binding Properties of Photosynthetic Herbicides: Photosynthetic Activity and Molecular Docking Approach towards 1,4-Dihydropyridines Derivatives. Chem Biodivers 2022; 19:e202200586. [PMID: 36383100 DOI: 10.1002/cbdv.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
In the current work, we describe the synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives via Hantzsch multicomponent reaction and their evaluation as photosystem II (PSII) inhibitors through chlorophyll a fluorescence bioassay. Among all the compounds tested, 1,1'-(2,4,6-trimethyl-1,4-dihydropyridine-3,5-diyl)bis(ethan-1-one) (4b) showed best results, reducing the parameters performance index on absorption basis (PIabs ) and electron transport per reaction center by 61 % and 49 %, respectively, as compared to the control. These results indicate the inhibitory activity of PSII over the electron transport chain. Additionally, a molecular docking approach using the protein D1 (PDB code 4V82) was performed in order to assess the structure-activity relationship among the 1,4-DHP derivatives over the PSII, which revealed that both, size of the group at position 4 and the carbonyl groups at the dihydropyridine ring are important for the ligand's interaction, particularly for the hydrogen-bonding interaction with the residues His215, Ser264, and Phe265. Thus, the optimization of these molecular features is the aim of our research group to extend the knowledge of PSII electron chain inhibitors and the establishment of new potent bioactive molecular scaffolds.
Collapse
Affiliation(s)
- Luís T X M G Soares
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | - Marcelo A F Basso
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | - Clarice M R Dos Santos
- Engineering Faculty, Federal University of Mato Grosso, Várzea Grande-MT, 78060-900, Brazil
| | - Akbar Ali
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Leonardo G Vasconcelos
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | - Evandro L Dall'Oglio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | - Olívia M Sampaio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | - Lucas C C Vieira
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| |
Collapse
|
3
|
Rezvanian A, Khodadadi B, Tafreshi S. Use of Dialkyl Acetylenedicarboxylates in the Multicomponent Synthesis of Heterocyclic Structures. ChemistrySelect 2022. [DOI: 10.1002/slct.202202360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Atieh Rezvanian
- Department of Organic Chemistry Faculty of Chemistry Alzahra University Tehran Iran
| | - Behnoosh Khodadadi
- Department of Organic Chemistry Faculty of Chemistry Alzahra University Tehran Iran
| | - Sepideh Tafreshi
- Department of Organic Chemistry Faculty of Chemistry Alzahra University Tehran Iran
| |
Collapse
|
4
|
Pang M, Shi LL, Xie Y, Geng T, Liu L, Liao RZ, Tung CH, Wang W. Cobalt-Catalyzed Selective Dearomatization of Pyridines to N–H 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maofu Pang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Le-Le Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianyi Geng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Di JQ, Chen MN, Zhao AD, Zhang ZH. Visible Light Mediated, Catalyst Free, One-Pot Convenient Synthesis of
Dihydropyridines. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210125162342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A simple, efficient and green protocol has been developed for the synthesis of polysubstituted dihydropyridines
via one-pot, four-component reaction of aldehydes, arylamines, dialkyl acetylenedicarboxylate, and malononitrile. The reaction was proceeded at room temperature in the absence of catalyst in aqueous ethyl lactate under visible light irradiation.
The main advantages of the present approach are mild reaction condition, high yield, no column chromatography, clean
reaction profile, environmentally friendly and sustainable from the economic point of view
Collapse
Affiliation(s)
- Jia-Qi Di
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional
Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Meng-Nan Chen
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional
Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Ai-Dong Zhao
- Analysis and Testing Center, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Zhan-Hui Zhang
- National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional
Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
6
|
Saigal, Khizr M, Sahoo SC, Khan MM. Synthesis, characterization, X-ray crystallographic study and in silico ADME predictions of functionalized nitropyrrole derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Demirbas N, Demirbas A. Organocatalyzed Heterocyclic Transformations In Green Media: A Review. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999200805115813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background:
Since the discovery of metal-free catalysts or organocatalysts about twenty
years ago, a number of small molecules with different structures have been used to accelerate organic
transformations. With the development of environmental awareness, to obtain highly efficient
scaffolds, scientists have directed their studies towards synthetic methodologies that minimize
or preferably eliminate the formation of waste, avoid toxic solvents and reagents and use renewable
starting materials as far as possible.
Methods:
In this connection, the organocatalytic reactions providing efficiency and selectivity for
most of the transformations have become an endless topic in organic chemistry since several advantages
from both practical and environmental standpoints. Organocatalysts contributing to the transformation
of reactants into products with the least possible waste production, have been serving the
concept of green chemistry.
Results and Conclusion:
Organocatalysts have been classified based on their binding capacity to
the substrate with covalent or noncovalent interactions involving hydrogen bonding and electrostatic
interaction. Diverse types of small organic compounds including proline and its derivatives,
phase-transfer catalysts, (thio)urease, phosphoric acids, sulfones, N-oxides, guanidines, cinchona
derivatives, aminoindanol, and amino acids have been utilized as hydrogen bonding organocatalysts
in different chemical transformations.
Collapse
Affiliation(s)
- Neslihan Demirbas
- Karadeniz Technical University, Department of Chemistry, 61080 Trabzon, Turkey
| | - Ahmet Demirbas
- Karadeniz Technical University, Department of Chemistry, 61080 Trabzon, Turkey
| |
Collapse
|
8
|
Imtiaz S, Ahmad War J, Banoo S, Khan S. α-Aminoazoles/azines: key reaction partners for multicomponent reactions. RSC Adv 2021; 11:11083-11165. [PMID: 35423648 PMCID: PMC8695948 DOI: 10.1039/d1ra00392e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aromatic α-aminoazaheterocycles are the focus of significant investigations and exploration by researchers owing to their key role in diverse biological and physiological processes. The existence of their derivatives in numerous drugs and alkaloids is due to their heterocyclic nitrogenous nature. Therefore, the synthesis of a structurally diverse range of their derivatives through simple and convenient methods represents a vital field of synthetic organic chemistry. Multicomponent reactions (MCRs) provide a platform to introduce desirable structure diversity and complexity into a molecule in a single operation with a significant reduction in the use of harmful organic waste, and hence have attracted particular attention as an excellent tool to access these derivatives. This review covers the advances made from 2010 to the beginning of 2020 in terms of the utilization of α-aminoazaheterocycles as synthetic precursors in MCRs.
Collapse
Affiliation(s)
- Shah Imtiaz
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| | - Jahangir Ahmad War
- Department of Chemistry, National Institute of Technology Kashmir India-190006
| | - Syqa Banoo
- Department of Chemistry, Mangalayatan University Beswan Aligarh India-202146
| | - Sarfaraz Khan
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| |
Collapse
|
9
|
Saigal, Ghanem YSA, Uddin A, Khan S, Abid M, Khan MM. Synthesis, Biological Evaluation and Docking Studies of Functionalized Pyrrolo[3,4‐
b
]pyridine Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202004781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saigal
- Department of Chemistry Aligarh Muslim University Aligarh 202002, U.P India
| | | | - Amad Uddin
- Medicinal Chemistry Laboratory Department of Biosciences, Jamia Millia Islamia New Delhi India 110025
| | - Sarfaraz Khan
- Department of Chemistry Aligarh Muslim University Aligarh 202002, U.P India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory Department of Biosciences, Jamia Millia Islamia New Delhi India 110025
| | - Md. Musawwer Khan
- Department of Chemistry Aligarh Muslim University Aligarh 202002, U.P India
| |
Collapse
|
10
|
Shahbakhsh Y, Habibi‐Khorassani SM, Shahraki M. Potassium Iodide as a New Nucleophilic Catalyst for the Novel Synthesis of Ionic Vinyl Compounds: Experimental and Theoretical Kinetic Approaches. ChemistrySelect 2020. [DOI: 10.1002/slct.202002224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaser Shahbakhsh
- Department of ChemistryFaculty of ScienceUniversity of Sistan and Baluchestan P O Box 98135–674 Zahedan Iran 33446565
| | | | - Mehdi Shahraki
- Department of ChemistryFaculty of ScienceUniversity of Sistan and Baluchestan P O Box 98135–674 Zahedan Iran 33446565
| |
Collapse
|
11
|
Yang H, Zhang L, Zhou FY, Jiao L. An umpolung approach to the hydroboration of pyridines: a novel and efficient synthesis of N-H 1,4-dihydropyridines. Chem Sci 2019; 11:742-747. [PMID: 34123047 PMCID: PMC8145361 DOI: 10.1039/c9sc05627k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The first inverse hydroboration of pyridine with a diboron(4) compound and a proton source has been realized under simple basic and catalyst-free conditions. This process consists of a formal boryl anion addition to pyridine, which produces an N-boryl pyridyl anion complex, and the subsequent protonation of the anion complex. This process enables a simple and efficient method for the synthesis of multi-substituted N-H 1,4-dihydropyridine (1,4-DHP) derivatives that are difficult to prepare using established methods. Furthermore, this method allows for facile preparation of 4-deuterated 1,4-DHPs from an easily accessible deuterium ion source. This inverse hydroboration reaction represents a new mode for pyridine functionalization.
Collapse
Affiliation(s)
- Huan Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Li Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Fei-Yu Zhou
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Saigal, Irfan M, Khan P, Abid M, Khan MM. Design, Synthesis, and Biological Evaluation of Novel Fused Spiro-4 H-Pyran Derivatives as Bacterial Biofilm Disruptor. ACS OMEGA 2019; 4:16794-16807. [PMID: 31646225 PMCID: PMC6796888 DOI: 10.1021/acsomega.9b01571] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 10/07/2023]
Abstract
This study aims to synthesize novel fused spiro-4H-pyran derivatives under green conditions to develop agents having antimicrobial activity. The synthesized compounds were initially screened for in vitro antibacterial activity against two Gram-positive and three Gram-negative bacterial strains, and all the compounds exhibited moderate to potent antibacterial activity. However, compound 4l showed significant inhibition toward all the bacterial strains, particularly against Streptococcus pneumoniae and Escherichia coli with minimum inhibitory concentration values of 125 μg/mL for each. The toxicity studies of selected compounds (4c, 4e, 4l, and 4m) using human red blood cells as well as human embryonic kidney (HEK-293) cells showed nontoxic behavior at desired concentration. Growth kinetic and time-kill curve studies of 4l against S. pneumoniae and E. coli supported its bactericidal nature. Interestingly, compound 4l showed a synergistic effect when used in combination with ciprofloxacin against selected strains. Biofilm formation in the presence of a lead compound, as assessed by XTT assay, showed complete disruption of the bacterial biofilm visualized by scanning electron microscopy. Overall, the findings suggest 4l to be considered as a promising lead for further development as an antibacterial agent.
Collapse
Affiliation(s)
- Saigal
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Irfan
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Abid
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Musawwer Khan
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
13
|
Maddila S, Nagaraju K, Chinnam S, Jonnalagadda SB. Microwave‐Assisted Multicomponent Reaction: A Green and Catalyst‐Free Method for the Synthesis of Poly‐Functionalized 1,4‐Dihydropyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201902779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Suresh Maddila
- Department of ChemistryGITAM Institute of SciencesGITAM University, Visakhapatnam, Andhra Pradesh India
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| | - Kerru Nagaraju
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| | - Sampath Chinnam
- Department of ChemistryB.M.S. College of Engineering, Basavanagudi, Bull Temple Road Bangalore 560019 Karnataka India
| | - Sreekantha B Jonnalagadda
- School of Chemistry & PhysicsUniversity of KwaZulu-NatalWestville Campus, Chilten Hills, Private Bag 54001 Durban- 4000 South Africa
| |
Collapse
|
14
|
Khan MM, Shareef S, Saigal, Sahoo SC. A catalyst- and solvent-free protocol for the sustainable synthesis of fused 4 H-pyran derivatives. RSC Adv 2019; 9:26393-26401. [PMID: 35531009 PMCID: PMC9070424 DOI: 10.1039/c9ra04370e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
An efficient and cost-effective method was developed for the synthesis of two kinds of fused 4H-pyran derivatives, namely, dihydropyrano[2,3-c]pyrazole 4 and pyrano[3,2-c]chromenone 6. The reactions of 3-methyl-1-phenyl-5-pyrazolone/4-hydroxycoumarin with aromatic aldehydes and (E)-N-methyl-1-(methylthio)-2-nitroethenamine (NMSM), involving the Knoevenagel, Michael-addition, O-cyclization and elimination reactions under thermal heating, afforded the desired products. The synthesized compounds were characterized by standard spectroscopic techniques. Further, the structures of pyrazole-fused 4H-pyran 4a and coumarin-fused 4H-pyran 6b were confirmed by single-crystal XRD analysis. The short reaction time, good-to-excellent yields, elimination of the use of expensive, metallic and toxic catalysts or hazardous organic solvents and high atom-economy are some noteworthy features of this protocol. A practical and greener method for the synthesis of highly functionalized pyrazole and coumarin fused 4H-pyran derivatives by exploring NMSM under neat conditions at 110 °C is described.![]()
Collapse
Affiliation(s)
- Md Musawwer Khan
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | | | - Saigal
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - Subash C Sahoo
- Department of Chemistry, Center of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| |
Collapse
|
15
|
Khan MM, Saigal, Khan S. One‐Pot Knoevenagel–Michael–Cyclization Cascade Reaction for the Synthesis of Functionalized Novel 4 H‐pyrans by Using ZnCl 2as a Catalyst. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Musawwer Khan
- Department of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Saigal
- Department of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Sarfaraz Khan
- Department of ChemistryAligarh Muslim University Aligarh 202002 India
| |
Collapse
|
16
|
Khan MM, Saigal B, Shareef S, Khan S, Sahoo SC. One-pot practical method for synthesis of functionalized 4H-chromen-5-one derivatives under catalyst and solvent-free conditions. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1517218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- M. Musawwer Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Biswas Saigal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | | | - Sarfaraz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Subash C. Sahoo
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Khan MM, Saigal S, Khan S, Shareef S, Sahoo SC. Microwave irradiation: a green approach for the synthesis of functionalizedN-methyl-1,4-dihydropyridines. RSC Adv 2018; 8:41892-41903. [PMID: 35558769 PMCID: PMC9091863 DOI: 10.1039/c8ra09155b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/28/2018] [Indexed: 11/21/2022] Open
Abstract
An eco-friendly and cost-effective, microwave-assisted green approach has been developed for the synthesis of diverse functionalized N-methyl-1,4-dihydropyridines (1,4-DHPs). This pseudo three-component reaction was carried out between two equivalents of (E)-N-methyl-1-(methylthio)-2-nitroethenamine (NMSM) and one equivalent of aromatic aldehydes under microwave irradiation at 100 °C without catalyst and solvent. Short reaction times, avoidance of toxic solvents or expensive, metallic and corrosive catalysts and no need for column chromatographic purification are among the valuable features of the presented method. Moreover, the “greenness” of the method was evaluated within the ambits of the defined green metrics such as atom economy, carbon efficiency, E-factor, reaction mass efficiency, overall efficiency, process mass intensity and solvent intensity and the method exhibited a good to excellent score. Microwave-assisted green synthesis of N-methyl-1,4-dihydropyridines under eco-friendly conditions.![]()
Collapse
Affiliation(s)
- M. Musawwer Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Saigal Saigal
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Sarfaraz Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | | | - Subash C. Sahoo
- Department of Chemistry
- Center of Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|