1
|
R T, Kumar MH, Ankalgi V, Shaikh SF, Al-Enizi AM, Małecki JG, Kshirsagar UA, Rout CS, Dateer RB. Green Approach for the Synthesis of 2-Phenyl-2 H-indazoles and Quinazoline Derivatives Using Sustainable Heterogeneous Copper Oxide Nanoparticles Supported on Activated Carbon and OER Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22918-22930. [PMID: 39410783 DOI: 10.1021/acs.langmuir.4c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This research work reports the synthesis of copper oxide (CuO) nanoparticles supported on activated carbon by a simple impregnation method using 2-propanol as a green solvent, followed by calcination. The synthesized CuO@C is used as an efficient heterogeneous nanocatalyst for the synthesis of 2H-indazoles and quinazolines utilizing commercially available 2-bromobenzaldehydes, primary amines, and sodium azide under ligand-free and base-free conditions. The present methodology demonstrates the formation of new N-N, C-N, and C═N bonds under one-pot reaction conditions using PEG-400 as a green solvent. The reaction pathways are supported by control experiments and mechanistic elucidation. Further, the synthesized catalyst was characterized by a range of microscopic and spectroscopic techniques such as powdered X-ray diffraction, fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, UV-vis, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and BET-BJH analysis. Importantly, the study focused on the recyclability of the catalyst and successfully showed gram-scale production. Significantly, our active catalyst exhibited an outstanding performance in the oxygen evolution reaction, with an overpotential of 290 mV and a swallow Tafel slope of 91 mV dec-1.
Collapse
Affiliation(s)
- Thrilokraj R
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Maruboina Hemanth Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Vishwanath Ankalgi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
2
|
Mohlala RL, Rashamuse TJ, Coyanis EM. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: a tremendous growth in the past 5 years. Front Chem 2024; 12:1469677. [PMID: 39359421 PMCID: PMC11445040 DOI: 10.3389/fchem.2024.1469677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Since Strecker's discovery of multicomponent reactions (MCRs) in 1850, the strategy of applying an MCR approach has been in use for over a century. Due to their ability to quickly develop molecular diversity and structural complexity of interest, MCRs are considered an efficient approach in organic synthesis. Although MCRs such as the Ugi, Passerini, Biginelli, and Hantzsch reactions are widely studied, this review emphasizes the significance of selective MCRs to elegantly produce organic compounds of potential use in medicinal chemistry and industrial and material science applications, as well as the use of the MCR approach to sustainable methods. During synthesis, MCRs provide advantages such as atom economy, recyclable catalysts, moderate conditions, preventing waste, and avoiding solvent use. MCRs also reduce the number of sequential multiple reactions to one step.
Collapse
|
3
|
Ghorbani-Choghamarani A, Kakakhani Z, Taherinia Z. 4,6-Diamino-2-thiopyrimidine-based Cobalt Metal Organic Framework (Co-DAT-MOF): green, efficient, novel and reusable nanocatalyst for synthesis of multicomponent reactions. Sci Rep 2023; 13:7502. [PMID: 37160980 PMCID: PMC10169762 DOI: 10.1038/s41598-023-34001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/22/2023] [Indexed: 05/11/2023] Open
Abstract
In this study, Co-DAT-MOF powder was prepared via the solvothermal method using 4, 6-diamino-2-thiopyrimidine as the organic linker and Co(NO3)2·6H2O. The synthesized catalysts are characterized using XRD, FT-IR, TGA, SEM, BET, NH3-TPD, and ICP-OES techniques. SEM analysis clearly indicated the formation of nanosheet microspheres. NH3-TPD-MS was employed as a means of identifying the various strengths of acid sites and their relative abundance in an attempt to explain the effect of the catalyst surface acid sites. We identified a new acidic feature in Co-DAT-MOF catalyst, related to the presence of desorption peaks in the NH3-TPD profiles. The activity of Co-DAT-MOF catalyst for the synthesis of multicomponent reactions correlates with lewis acidity. In addition, Co-DAT-MOF exhibited excellent performance for the synthesis of pyrroloacridine-1(2H)-one and chromeno [2, 3- d] pyrimidin-8-amines, as well as good reusability and recyclability.
Collapse
Affiliation(s)
| | - Zahra Kakakhani
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
4
|
Sheikholeslami-Farahani F, Sadeghi Marasht A, Mirabi A, Ghazvini M, Hosseinnasab Rostam M. Ionic Liquid as Green and Recyclable Solvent for the Synthesis of Pyrazinoquinazolines: Study of Antioxidant Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1871039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Abdollah Sadeghi Marasht
- Active Pharmaceutical Ingeredients Research Center (APIRC), Tehran Medicinal Science Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mirabi
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Maryam Ghazvini
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
5
|
Khanmohammadi‐Sarabi F, Ghorbani‐Choghamarani A, Aghavandi H, Zolfigol MA. ZnFe
2
O
4
@SiO
2
‐ascorbic acid: green, magnetic, and versatile catalyst for the synthesis of chromeno[2,3‐d] pyrimidine‐8‐amine and quinazoline derivatives. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Hamid Aghavandi
- Department of Organic Chemistry Faculty of Chemistry, Bu‐Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry Faculty of Chemistry, Bu‐Ali Sina University Hamedan Iran
| |
Collapse
|
6
|
Kumar P, Tomar V, Joshi RK, Nemiwal M. Nanocatalyzed synthetic approach for quinazoline and quinazolinone derivatives: A review (2015–present). SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2041667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Vijesh Tomar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Raj Kumar Joshi
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| |
Collapse
|
7
|
Yadav S, Dixit R, Sharma S, Dutta S, Arora B, Rana P, Kaushik B, Solanki K, Sharma RK. Unravelling the catalytic potential of a magnetic CoFe 2O 4/Cu–ABDC MOF composite in the sustainable synthesis of 2 H-indazole motifs. NEW J CHEM 2022. [DOI: 10.1039/d2nj01490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A magnetic CoFe2O4/Cu–ABDC hybrid composite was fabricated for the synthesis of biologically active and pharmacologically significant 2H-indazole scaffolds.
Collapse
Affiliation(s)
- Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Ranjana Dixit
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Shivani Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| | - Rakesh K. Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi – 110007, India
| |
Collapse
|
8
|
Taherinia Z, Ghorbani‐Choghamarani A. Immobilized Na
2
WO
4
.2H
2
O on Arginine Modified Bentonite (Bentonite@L‐Arginine‐WO
3
): An Efficient and Sustainable Catalyst for the C−C Bond Formation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Taherinia
- Department of Chemistry Ilam University and P.O. Box 69315516 Ilam Iran
| | | |
Collapse
|
9
|
Ghorbani-Choghamarani A, Taherinia Z, Heidarnezhad Z, Moradi Z. Application of Nanofibers Based on Natural Materials as Catalyst in Organic Reactions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Fairoosa J, Neetha M, Anilkumar G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Adv 2021; 11:3452-3469. [PMID: 35424324 PMCID: PMC8694354 DOI: 10.1039/d0ra10472h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Heterocyclic compounds have become an inevitable part of organic chemistry due to their ubiquitous presence in bioactive compounds. Copper-catalyzed multicomponent synthesis of heterocycles has developed as the most convenient and facile synthetic route towards complex heterocyclic motifs. In this review, we discuss the advancements in the field of copper-catalyzed multicomponent reactions for the preparation of heterocycles since 2018. Heterocycles are abundant in several pharmaceutical and naturally occurring compounds. Copper-catalyzed multicomponent reactions are a convenient method for easy access to heterocycles. In this review, we focus on the advancement in this field for the past two years.![]()
Collapse
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
11
|
Ghorbani‐Choghamarani A, Bastan H, Taherinia Z. New microsphere cobalt complex: preparation and catalytic consideration for the synthesis of some heterocyclic compounds. ChemistrySelect 2020. [DOI: 10.1002/slct.202003607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Hosna Bastan
- Department of Chemistry Faculty of Science Ilam University, and P.O. Box 69315516 Ilam Iran
| | - Zahra Taherinia
- Department of Chemistry Faculty of Science Ilam University, and P.O. Box 69315516 Ilam Iran
| |
Collapse
|
12
|
Abstract
Imines, versatile intermediates for organic synthesis, can be exploited for the
preparation of diverse classes of biologically active benzazoles. Because of the special
characteristics of the C=N bond, imines can be simultaneously used in the synthesis of
1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of
novel cascade reactions for benzazole synthesis have been reported in the last decade.
Therefore, there is a strong need to elucidate the recent progress in the formation of various
classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles,
and benzisoxazoles, via imines obtained by condensation reactions or oxidative/
redox coupling reactions In this review, we provide a comprehensive survey of this
area. In particular, various green and mild synthetic methodologies are summarized, and
the multiple roles of novel catalysts and significant mechanisms for several transformations are highlighted in
detail. We believe that this review will aid researchers studying the synthesis of complex molecules containing
the benzazole motif via imines.
Collapse
Affiliation(s)
- Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingbo Zang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
13
|
A review on synthesis and applications of dendrimers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02053-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|