1
|
Synthesis, antimicrobial and thermal studies of nitropyridine-substituted double armed benzo-15-crown-5 ligands; alkali (Na+ and K+) and transition metal (Ag+) complexes; reduction of nitro compounds. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01157-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Raji M, Le TM, Huynh T, Szekeres A, Nagy V, Zupkó I, Szakonyi Z. Divergent Synthesis, Antiproliferative and Antimicrobial Studies of 1,3-Aminoalcohol and 3-Amino-1,2-Diol Based Diaminopyrimidines. Chem Biodivers 2022; 19:e202200077. [PMID: 35349207 DOI: 10.1002/cbdv.202200077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
A series of novel diaminopyrimidines containing pinane moieties were synthesized via an efficient methodology starting from pinane-based aminoalcohols, aminodiols and 2,4-dichloropyrimidines. Bioassay tests demonstrated that compound 18a displayed much stronger antiproliferative activities against four human cancer cell lines (HeLa, Siha, MDA-MB-231, MCF-7 and A2780) than positive control cisplatin. In particular, compound 22a was found to be selective in inhibiting HeLa cell proliferation with cancer cell growth inhibition values higher than 95 %. Moreover, the in vitro screening of prepared compounds against different bacterial and fungal strains is reported. The results revealed that 12b and 17a, the most promising compounds, displayed selective inhibition for the Gram-positive bacteria (B. subtilis and S. aureus) with percent inhibition values ranging from 75 to 95 % at 10 μg/mL concentration. Both selective inhibition and the in vitro activity values demonstrated that these compounds have the potential to be developed into clinically important therapeutic choices for the treatment of infections caused by B. subtilis and S. aureus.
Collapse
Affiliation(s)
- Mounir Raji
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Eötvös u. 6, Hungary
| | - Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Eötvös u. 6, Hungary.,Stereochemistry Research Group of the Hungarian Academy of Sciences, 6720, Szeged, Eötvös u. 6, Hungary
| | - Thu Huynh
- Department of Microbiology, University of Szeged, 6726, Szeged, Közép fasor 52, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, 6726, Szeged, Közép fasor 52, Hungary
| | - Viktória Nagy
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, 6720, Szeged, Eötvös utca 6, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, 6720, Szeged, Eötvös utca 6, Hungary.,Interdisciplinary Center of Natural Products, University of Szeged, 6720, Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Eötvös u. 6, Hungary.,Interdisciplinary Center of Natural Products, University of Szeged, 6720, Szeged, Hungary
| |
Collapse
|
3
|
Tunç T, Alım Z. Synthesis of New Schiff Bases and Assessment of Their in vitro Biological Effects on Acetylcholinesterase and Carbonic Anhydrase Isoenzymes Activities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|