Qi X, Liu P, Yao F, Zhao M, Shen X, Wang Z. Exploring the synchronized effect of MWCNT/X-manganate (X-Cu, Zn) nanocomposite for the sensitive and selective electrochemical detection of Hg(II) and Pb(II) in water.
ANAL SCI 2024;
40:2147-2165. [PMID:
39212898 DOI:
10.1007/s44211-024-00652-1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
The presence of heavy metal ions in the environment is a long-lasting problem that requires the simultaneous detection of Hg(II) and Pb(II) which is both vital and challenging. This present study examines a simplified and effective approach for synthesizing multi-walled carbon nanotube-copper manganese oxide (MWCNT-CuMn2O4) and multi-walled carbon nanotube-zinc manganese oxide (MWCNT-ZnMn2O4) nanocomposites for electrochemical detection of heavy metal ions. The nanocomposites MWCNT-CuMn2O4 and MWCNT-ZnMn2O4 exceptional electrochemical performance was evaluated using Square Wave Anodic Stripping Voltammetry (SWASV). The fabricated MWCNT-ZnMn2O4 demonstrated lower values of Electrochemical Impedance Spectroscopy (EIS) with charge transfer resistance (Rct) of approximately 34.13 Ω. Remarkably, the MWCNT-ZnMn2O4 electrochemical sensor exhibited the widest linear ranges of 0.5-10 μM with sensitive detection limits (0.011 μM for Hg(II) and 0.014 μM for Pb(II)). Interestingly, the MWCNT-ZnMn2O4 sensor showed excellent capability in detecting Hg(II) and Pb(II) in real water samples with a recovery percentage of 94.1% and 91.3%. Overall, the MWCNT-ZnMn2O4 modified GCE showcased superior selectivity, sensitivity, reproducibility, stability, and repeatability.
Collapse