1
|
Yang W, Teng L, Sun X, Liu J, Huang Y, Zhao Q, Song W, Ren L. Dynamically Phototunable and Redox‐Responsive Hybrid Supramolecular Hydrogels for Three‐Dimensional Culture of Chondrocytes. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weiya Yang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Lijing Teng
- School of Biology and Engineering Guizhou Medical University Guizhou 550025 China
| | - Xiaomin Sun
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Jia Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Yongrui Huang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Qi Zhao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Wenjing Song
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
- Sino‐Singapore International Joint Research Institute Guangzhou 510555 China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) Guangzhou 510005 China
| |
Collapse
|
2
|
Li Z, Li G, Xu J, Li C, Han S, Zhang C, Wu P, Lin Y, Wang C, Zhang J, Li X. Hydrogel Transformed from Nanoparticles for Prevention of Tissue Injury and Treatment of Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109178. [PMID: 35195940 DOI: 10.1002/adma.202109178] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Functional hydrogels responsive to physiological and pathological signals have extensive biomedical applications owing to their multiple advanced attributes. Herein, engineering of functional hydrogels is reported via transformable nanoparticles in response to the physiologically and pathologically acidic microenvironment. These nanoparticles are assembled by a multivalent hydrophobic, pH-responsive cyclodextrin host material and a multivalent hydrophilic guest macromolecule. Driven by protons, the pH-responsive host-guest nanoparticles can be transformed into hydrogel, resulting from proton-triggered hydrolysis of the host material, generation of a hydrophilic multivalent host compound, and simultaneously enhanced inclusion interactions between host and guest molecules. By in situ forming a hydrogel barrier, the orally delivered transformable nanoparticles protect mice from ethanol- or drug-induced gastric injury. In addition, this type of nanoparticles can serve as responsive and transformable nanovehicles for therapeutic agents to achieve triggerable and sustained drug delivery, thereby effectively treating typical inflammatory diseases, including periodontitis and arthritis in rats. With combined advantages of nanoparticles and hydrogels, together with their good in vivo safety, the engineered transformable nanoparticles hold great promise in tissue injury protection and site-specific/local delivery of molecular and cellular therapeutic agents.
Collapse
Affiliation(s)
- Zimeng Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jiajia Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Songling Han
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Chunfan Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Peng Wu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, P. R. China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Chenping Wang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Xiaodong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| |
Collapse
|