1
|
Cong Y, Abulimiti M, Matsumoto Y, Jin J. Current research trends and hotspots of boron neutron capture therapy: a bibliometric and visualization analysis. Front Oncol 2024; 14:1507157. [PMID: 39726703 PMCID: PMC11669655 DOI: 10.3389/fonc.2024.1507157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Purpose This study aimed to describe the trends, current hotspots, and future directions in boron neutron capture therapy (BNCT) through a bibliometric analysis. Methods Articles related to BNCT published before 2023-12-31 were retrieved from the Web of Science Core Collection database. VOSviewer, R, and CiteSpace were used for bibliometric analysis and visualization. Results A total of 3347 related publications from 1975 to 2023 were retrieved. Since a burst of published documents in 1992, the past three decades have witnessed continuous investigations into BNCT-related studies. Japan was the most productive country (794, 23.72%), followed by the USA (792, 23.66%), while the latter had the most citations. Kyoto University was the most influential institution. Ono K was the most prolific author, and Applied Radiation and Isotopes was the most popular journal. Ono K was the author that had the most total citations, followed by Barth RF. "Carborane", "boronophenylalanine", "glioblastoma", "sodium borocaptate", "cancer" and "drug delivery" were the most frequent keywords. The article "Dendrimers and dendritic polymers in drug delivery" had the most citations, whereas "Boron delivery agents for neutron capture therapy of cancer" had the highest outbreak value. Conclusion Over the past three decades, research on BNCT has expanded significantly, with the development of novel boron carriers with improved medicinal characteristics being the most extensively investigated area. Future research will likely focus on the validation and modification of current BNCT treatment modalities using conventional boron agents in brain tumors, accelerator-based neutron sources and the application of BNCT in more clinical scenarios.
Collapse
Affiliation(s)
- Yuyang Cong
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Muyasha Abulimiti
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Luo T, Huang W, Chu F, Zhu T, Feng B, Huang S, Hou J, Zhu L, Zhu S, Zeng W. The Dawn of a New Era: Tumor-Targeting Boron Agents for Neutron Capture Therapy. Mol Pharm 2023; 20:4942-4970. [PMID: 37728998 DOI: 10.1021/acs.molpharmaceut.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cancer is widely recognized as one of the most devastating diseases, necessitating the development of intelligent diagnostic techniques, targeted treatments, and early prognosis evaluation to ensure effective and personalized therapy. Conventional treatments, unfortunately, suffer from limitations and an increased risk of severe complications. In light of these challenges, boron neutron capture therapy (BNCT) has emerged as a promising approach for cancer treatment with unprecedented precision to selectively eliminate tumor cells. The distinctive and promising characteristics of BNCT hold the potential to revolutionize the field of oncology. However, the clinical application and advancement of BNCT technology face significant hindrance due to the inherent flaws and limited availability of current clinical drugs, which pose substantial obstacles to the practical implementation and continued progress of BNCT. Consequently, there is an urgent need to develop efficient boron agents with higher boron content and specific tumor-targeting properties. Researchers aim to address this need by integrating tumor-targeting strategies with BNCT, with the ultimate goal of establishing BNCT as an effective, readily available, and cutting-edge treatment modality for cancer. This review delves into the recent advancements in integrating tumor-targeting strategies with BNCT, focusing on the progress made in developing boron agents specifically designed for BNCT. By exploring the current state of BNCT and emphasizing the prospects of tumor-targeting boron agents, this review provides a comprehensive overview of the advancements in BNCT and highlights its potential as a transformative treatment option for cancer.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jing Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Liyong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shaihong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
4
|
Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem 2022; 13:471-496. [PMID: 35685617 PMCID: PMC9132194 DOI: 10.1039/d1md00280e] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine Walther-Rathenau-Straße 49A 17489 Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
5
|
Zheng L, Chen K, Wu M, Zheng C, Liao Q, Wei X, Wang C, Zhao Y. 用于硼中子俘获治疗的含硼药物研究现状与热点前沿:基于文献计量的分析与思考. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|