1
|
Bindra S, Mostafa EM, Abdelgawad MA, Selim S, Kumar S, Mathew B. Synthetic strategies and medicinal chemistry perspectives of dual acting carbonic anhydrase modulators with monoamine oxidase and cholinesterase inhibitors. RSC Med Chem 2025:d4md00837e. [PMID: 39925735 PMCID: PMC11799932 DOI: 10.1039/d4md00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
Multi-target drug design (MTDD) represents the paradigm shift in pharmaceutical research, moving beyond the conventional one-drug-one-target approach to address the complexity of multifactorial diseases. This strategy aims to develop single therapeutic candidates that can simultaneously modulate multiple biological targets, offering more comprehensive disease management and reducing the likelihood of drug resistance. In this article, we highlighted the design, synthesis, and structure-activity relationships (SARs) of various dual acting inhibitors involved in treatment of neurodegenerative diseases. Dual acting inhibitors targeting carbonic anhydrases (CAs), monoamine oxidases (MAOs), and cholinesterases (ChEs) have emerged as promising therapeutic agents due to their potential in treating complex neurodegenerative and psychiatric disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). By integrating CA inhibitors with MAO and ChE inhibition, researchers aim to address both the neuroprotective and symptomatic aspects of these disorders. The review also discusses key SAR studies that have guided the optimization of dual inhibitors, focusing on achieving selectivity and potency while minimizing off-target effects. From a medicinal chemistry perspective, the dual inhibition approach offers advantages such as improved efficacy, reduced polypharmacy, and better management of disease progression. However, challenges remain, including maintaining selectivity for target isoforms and overcoming pharmacokinetic limitations. Overall, the development of dual-acting CA-MAO-ChE inhibitors represents a compelling avenue in drug discovery, with the potential to significantly impact the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandeep Bindra
- Dr. Bhagat Singh Rai College of Pharmacy Mandla Road Seoni-480661 Madhya Pradesh India
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi-682041 Kerala India
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University Sakaka 72388 Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72388 Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Saudi Arabia
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi-682041 Kerala India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham Amrita Health Science Campus Kochi-682041 Kerala India
| |
Collapse
|
2
|
Verma A, Waiker DK, Singh N, Roy A, Singh N, Saraf P, Bhardwaj B, Krishnamurthy S, Trigun SK, Shrivastava SK. Design, Synthesis, and Biological Investigation of Quinazoline Derivatives as Multitargeting Therapeutics in Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:745-771. [PMID: 38327209 DOI: 10.1021/acschemneuro.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human β-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 μM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aβ aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aβ-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aβ, BACE-1, APP/Aβ, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Jayan J, Chandran N, Thekkantavida AC, Abdelgawad MA, Ghoneim MM, Shaker ME, Uniyal P, Benny F, Zachariah SM, Kumar S, Kim H, Mathew B. Piperidine: A Versatile Heterocyclic Ring for Developing Monoamine Oxidase Inhibitors. ACS OMEGA 2023; 8:37731-37751. [PMID: 37867639 PMCID: PMC10586023 DOI: 10.1021/acsomega.3c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
The monoamine oxidase enzyme (MAO), which is bound on the membrane of mitochondria, catalyzes the oxidative deamination of endogenous and exogenous monoamines, including monoamine neurotransmitters such as serotonin, adrenaline, and dopamine. These enzymes have been proven to play a significant role in neurodegeneration; thus, they have recently been researched as prospective therapeutic targets for neurodegenerative illness treatment and management. MAO inhibitors have already been marketed as neurodegeneration illness treatments despite their substantial side effects. Hence, researchers are concentrating on developing novel molecules with selective and reversible inhibitory properties. Piperine, which is a phytochemical component present in black pepper, has been established as a potent MAO inhibitor. Piperine encompasses a piperidine nucleus with antibacterial, anti-inflammatory, antihypertensive, anticonvulsant, antimalarial, antiviral, and anticancer properties. The current Review focuses on the structural changes and structure-activity relationships of piperidine derivatives as MAO inhibitors.
Collapse
Affiliation(s)
- Jayalakshmi Jayan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Namitha Chandran
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Amrutha Chandran Thekkantavida
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni Suef University, Beni Suef 2722165, Egypt
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohamed E. Shaker
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka 72341, Aljouf Saudi Arabia
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Prerna Uniyal
- School
of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Feba Benny
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Subin Mary Zachariah
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Hoon Kim
- Department
of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| |
Collapse
|
4
|
Nguyen HH, Nguyen CT, Ngo HG, Nguyen GTT, Thuy PT, Setzer WN, Kuo PC, Bui HM. Potential for Aedes aegypti Larval Control and Environmental Friendliness of the Compounds Containing 2-Methyl-3,4-dihydroquinazolin-4-one Heterocycle. ACS OMEGA 2023; 8:25048-25058. [PMID: 37483229 PMCID: PMC10357533 DOI: 10.1021/acsomega.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
2-Methylquinazolin-4(3H)-one was prepared by the reaction of anthranilic acid, acetic anhydride, and ammonium acetate. The reaction of 2-methylquinazolin-4(3H)-one with N-aryl-2-chloroacetamides in acetone in the presence of potassium carbonate gave nine N-aryl-2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetamide compounds. The structures of these compounds were elucidated on the basis of their IR, 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometry (HR-MS) spectral data. These synthesized compounds containing the 2-methyl-3,4-dihydroquinazolin-4-one moiety exhibited activity against Aedes aegypti mosquito larvae with LC50 values of 2.085-4.201 μg/mL after 72 h exposure, which is also confirmed using a quantitative structure-activity relationship (QSAR) model. Interestingly, these compounds did not exhibit toxicity to the nontarget organism Diplonychus rusticus. In silico molecular docking revealed acetylcholine binding protein (AChBP) and acetylcholinesterase (AChE) to be potential molecular targets. These data indicated the larvicidal potential and environmental friendliness of these N-aryl-2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetamide derivatives.
Collapse
Affiliation(s)
- Hung Huy Nguyen
- Center
for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 55000, Vietnam
- Department
of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 55000, Vietnam
| | - Cong Tien Nguyen
- Department
of Chemistry, Ho Chi Minh City University
of Education, 280 An
Duong Vuong Street, Ward 4, District 5, Ho
Chi Minh City 70000, Vietnam
| | - Huy Gia Ngo
- Center
for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 55000, Vietnam
- Department
of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 55000, Vietnam
| | - Giang Thi Truc Nguyen
- Department
of Chemistry, Ho Chi Minh City University
of Education, 280 An
Duong Vuong Street, Ward 4, District 5, Ho
Chi Minh City 70000, Vietnam
- Thanh
Hoa High School, Thanh Hoa District, Long An Province 82906, Vietnam
| | - Phan Thi Thuy
- Faculty
of Chemistry, College of Education, Vinh
University 182 Le Duan, Vinh City, Nghe An Province 46000, Vietnam
| | - William N. Setzer
- Aromatic
Plant Research Center, 230 N 1200 E, Suite 100, Lehi, Utah 84043, United States
- Department
of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Ping-Chung Kuo
- School
of Pharmacy, College of Medicine, National
Cheng Kung University, Tainan 701, Taiwan
| | - Ha Manh Bui
- Faculty
of Environment, Saigon University, 273 An Duong Vuong Street, District
5, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
5
|
Liu W, Shao L, Li C, Zou Y, Long H, Li Y, Ge Q, Wang Z, Ouyang G. Synthesis and Antitumor Activity of 3-Hydrazone Quinazolinone Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Moreira NM, dos Santos JRN, Correa A. Greener Synthesis of Pyrroloquinazoline Derivatives: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natália Menezes Moreira
- Federal University of Sao Carlos: Universidade Federal de Sao Carlos Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Jhonathan Renner Nunes dos Santos
- Federal University of Sao Carlos Sciences and Technology Centre: Universidade Federal de Sao Carlos Centro de Ciencias Exatas e de Tecnologia Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Arlene Correa
- Federal University of São Carlos Chemistry Via Washington Luis km 235 13565-905 São Carlos BRAZIL
| |
Collapse
|
7
|
Kumar S, Nair AS, Abdelgawad MA, Mathew B. Exploration of the Detailed Structure-Activity Relationships of Isatin and Their Isomers As Monoamine Oxidase Inhibitors. ACS OMEGA 2022; 7:16244-16259. [PMID: 35601305 PMCID: PMC9118264 DOI: 10.1021/acsomega.2c01470] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 05/14/2023]
Abstract
Monoamine oxidase (MAO) is a protein with a key function in the catabolism of neuroamines in both central and peripheral parts of the body. MAO-A and -B are two isozymes of this enzyme which have emerged to be considered as a drug target for the treatment of neurodenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Isatin is an endogenous small fragment, reversible inhibitor for MAO enzymes and is more selective for MAO-B than -A. Isatin is responsible for increasing the dopamine level in the brain by the inhibition of an MAO enzyme. The very few selective and reversible inhibitors existing for MAO proteins and the intensity of neurological diseases in humanity have opened a new door for researchers. Isatin has a polypharmacological profile in medicinal chemistry, is a reversible inhibitor for both the MAOs, and shows high selectivity potent inhibition for MAO-B. In this review, we discuss isatins and their analogues phthalide and phthalimide with structure-activity relationships (SARs), and this comprehensive information accelerates the ideas for design and development of a new class of MAO inhibitors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Aathira Sujathan Nair
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
8
|
Yamali C, Inci Gul H, Tugrak Sakarya M, Nurpelin Saglik B, Ece A, Demirel G, Nenni M, Levent S, Cihat Oner A. Quinazolinone-based benzenesulfonamides with low toxicity and high affinity as monoamine oxidase-A inhibitors: Synthesis, biological evaluation and induced-fit docking studies. Bioorg Chem 2022; 124:105822. [DOI: 10.1016/j.bioorg.2022.105822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
|
9
|
Kakoulidou C, Chasapis CT, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Transition metal( ii) complexes of halogenated derivatives of ( E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline: structure, antioxidant activity, DNA-binding DNA photocleavage, interaction with albumin and in silico studies. Dalton Trans 2022; 51:16688-16705. [DOI: 10.1039/d2dt02622h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six transition metal(ii) complexes with halogenated quinazoline derivatives as ligands were characterized and evaluated for interaction with calf-thymus DNA, photocleavage of plasmid-DNA, affinity for bovine serum albumin, and antioxidant activity.
Collapse
Affiliation(s)
- Chrisoula Kakoulidou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Greece
| | - Antonios G. Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Venkidath A, Oh JM, Dev S, Amin E, Rasheed SP, Vengamthodi A, Gambacorta N, Khames A, Abdelgawad MA, George G, Nicolotti O, Kim H, Mathew B. Selected Class of Enamides Bearing Nitro Functionality as Dual-Acting with Highly Selective Monoamine Oxidase-B and BACE1 Inhibitors. Molecules 2021; 26:molecules26196004. [PMID: 34641548 PMCID: PMC8512054 DOI: 10.3390/molecules26196004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/10/2023] Open
Abstract
A small series of nitro group-bearing enamides was designed, synthesized (NEA1–NEA5), and evaluated for their inhibitory profiles of monoamine oxidases (MAOs) and β-site amyloid precursor protein cleaving enzyme 1 (β-secretase, BACE1). Compounds NEA3 and NEA1 exhibited a more potent MAO-B inhibition (IC50 value = 0.0092 and 0.016 µM, respectively) than the standards (IC50 value = 0.11 and 0.14 µM, respectively, for lazabemide and pargyline). Moreover, NEA3 and NEA1 showed greater selectivity index (SI) values toward MAO-B over MAO-A (SI of >1652.2 and >2500.0, respectively). The inhibition and kinetics studies suggested that NEA3 and NEA1 are reversible and competitive inhibitors with Ki values of 0.013 ± 0.005 and 0.0049 ± 0.0002 µM, respectively, for MAO-B. In addition, both NEA3 and NEA1 showed efficient BACE1 inhibitions with IC50 values of 8.02 ± 0.13 and 8.21 ± 0.03 µM better than the standard quercetin value (13.40 ± 0.04 µM). The parallel artificial membrane permeability assay (PAMPA) method demonstrated that all the synthesized derivatives can cross the blood–brain barrier (BBB) successfully. Docking analyses were performed by employing an induced-fit docking approach in the GLIDE module of Schrodinger, and the results were in agreement with their in vitro inhibitory activities. The present study resulted in the discovery of potent dual inhibitors toward MAO-B and BACE1, and these lead compounds can be fruitfully explored for the generation of newer, clinically active agents for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Anusree Venkidath
- Centre for Experimental Drug Design and Development, Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna 679325, India; (A.V.); (S.P.R.); (A.V.)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Sanal Dev
- Centre for Experimental Drug Design and Development, Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna 679325, India; (A.V.); (S.P.R.); (A.V.)
- Correspondence: (S.D.); (H.K.); or (B.M.)
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Shebina P. Rasheed
- Centre for Experimental Drug Design and Development, Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna 679325, India; (A.V.); (S.P.R.); (A.V.)
| | - Ajeesh Vengamthodi
- Centre for Experimental Drug Design and Development, Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna 679325, India; (A.V.); (S.P.R.); (A.V.)
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India;
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (S.D.); (H.K.); or (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India;
- Correspondence: (S.D.); (H.K.); or (B.M.)
| |
Collapse
|