1
|
Yiğit A, Köktürk M, Yıldırım S, Nazlı D, Kılıççıoğlu M, Şahin A, Atamanalp M, Ozhan G, Menges N, Alak G. Effect of boramidic acid modified carbon nanotubes on neurological, morphological and physiological responses of zebrafish (Danio rerio) embryos and larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174614. [PMID: 38992354 DOI: 10.1016/j.scitotenv.2024.174614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This study aimed to determine the potential toxicological effects of carbon nanotubes (CNTs), their modifications with ethylenediamine (ED) and boric acid (BA) on aquatic organisms. Specifically, the research focused on the morphological, physiological, and histopathological-immuno-histochemical responses in zebrafish (Danio rerio) embryos and larvae, via applying different concentrations of CNTs, CNT-ED, and CNT-ED-BA (Control, 5, 10, and 20 mg/L). The results indicated that 20 mg/L CNT nanoparticles were toxic to zebrafish larvae, with mortality rates increasing with CNT and CNT-ED concentrations, reaching 36.7 % at the highest CNT concentration. The highest dose caused considerable degeneration, necrosis, DNA damage, and apoptosis, as evidenced by histopathological and immunohistochemical tests. In contrast, despite their high concentration, CNT-ED-BA nanoparticles exhibited low toxicity. Behavioral studies revealed that CNT and CNT-ED nanoparticles had a more significant impact on sensory-motor functions compared to CNT-ED-BA nanoparticles. These findings suggest that modifying the nanosurface with boric acid, resulting in boramidic acid, can reduce the toxicity induced by CNT and CNT-ED.
Collapse
Affiliation(s)
- Aybek Yiğit
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, TR-76000 Igdir, Türkiye.
| | - Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000 Igdir, Türkiye
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Türkiye; Department of Pathology, Veterinary Faculty, Kyrgyzstan-Türkiye Manas University, Bishkek, Kyrgyzstan
| | - Dilek Nazlı
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, 35340 Izmir, Türkiye; Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye
| | - Metin Kılıççıoğlu
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Türkiye
| | - Ayşe Şahin
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye; Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla 35430, Izmir, Türkiye
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye
| | - Güneş Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova 35340, Izmir, Türkiye; Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla 35430, Izmir, Türkiye
| | - Nurettin Menges
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42100 Konya, Türkiye; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Türkiye.
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Türkiye.
| |
Collapse
|
2
|
Ecer Ü, Yiğit A, Menges N, Şahan T. Decolorization of methylene blue by silver/reduced graphene oxide-ethylene diamine nanomaterial: synthesis, characterization, and optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43852-43864. [PMID: 38909322 DOI: 10.1007/s11356-024-33986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
In this study, ethylene diamine-coated reduced graphene oxide-supported silver composite (Ag/rGO-ED) was synthesized and used as an efficient catalyst for the decolorization of methylene blue (MB) in the presence of NaBH4. The morphology of the obtained material was elucidated using field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The influences of four parameters (MB concentration (mg/L), NaBH4 amount (mM), catalyst amount (g/L), and contact time (s)) on the decolorization process were appraised and optimized via response surface methodology (RSM). For the decolorization of MB, the optimum solutions were obtained as Co of 32.49 mg/L, NaBH4 amount of 152.89 mM, catalyst amount of 0.83 g/L, and 101.39 s contact time with MB decolorization efficiency of 97.73%. MB, a pollutant in wastewater, was decolorized rapidly by Ag/rGO-ED with an efficiency of approximately 97%. The exploration of kinetics and thermodynamics was another major emphasis of the work. The activation energy (Ea) and rate constant (k) for the decolorization of MB were obtained as 37.9 kJ/mol and 0.0135 s-1, respectively. The obtained results show that the catalyst, a new composite material in the literature, is promising for decolorization of wastewater.
Collapse
Affiliation(s)
- Ümit Ecer
- Department of Chemical Engineering, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Aybek Yiğit
- The Research Laboratory Application and Research Center, Igdir University, Igdir, Turkey
| | - Nurettin Menges
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42100, Konya, Turkey
| | - Tekin Şahan
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, 65080, Van, Turkey
| |
Collapse
|
3
|
Shu Z, Zou Y, Wu X, Zhang Q, Shen Y, Xiao A, Duan S, Pi F, Liu X, Wang J, Dai H. NH2-MIL-125(Ti)/Reduced Graphene Oxide Enhanced Electrochemical Detection of Fenitrothion in Agricultural Products. Foods 2023; 12:foods12071534. [PMID: 37048355 PMCID: PMC10093892 DOI: 10.3390/foods12071534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
The abuse of organophosphate pesticides causes serious threats to human health, which threatens approximately 3 million people and leads to more than 2000 deaths each year. Therefore, it is necessary to determine the residue of fenitrothion (FT) in environmental and food samples. Herein, we developed a non-enzymatic electrochemical sensor with differential pulse voltammetry signal output to determine FT in model solutions and spiked samples. Delicately, the sensor was designed based on the fabrication of hydrothermally synthesized titanium-based metal-organic frameworks (MOFs) material (NH2-MIL-125(Ti))/reduced graphene oxide (RGO) (NH2-MIL-125(Ti)/RGO) nanocomposites for better target enrichment and electron transfer. The peak response of differential pulse voltammetry for FT under optimized conditions was linear in the range of 0.072–18 μM with the logarithm of concentrations, and the detection limit was 0.0338 μM. The fabricated sensor also demonstrated high stability and reproducibility. Moreover, it exhibited excellent sensing performances for FT in spiked agricultural products. The convenient fabrication method of NH2-MIL-125(Ti)/RGO opens up a new approach for the rational design of non-enzymatic detection methods for pesticides.
Collapse
Affiliation(s)
- Zaixi Shu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Zou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuyue Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yafang Shen
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Anhong Xiao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuo Duan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan 430023, China
| | - Fuwei Pi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaodan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huang Dai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan 430023, China
| |
Collapse
|
4
|
Barrón-González M, Montes-Aparicio AV, Cuevas-Galindo ME, Orozco-Suárez S, Barrientos R, Alatorre A, Querejeta E, Trujillo-Ferrara JG, Farfán-García ED, Soriano-Ursúa MA. Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. J Inorg Biochem 2023; 238:112027. [PMID: 36345068 DOI: 10.1016/j.jinorgbio.2022.112027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico; Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Alexia V Montes-Aparicio
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico; Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico
| | - M Emilio Cuevas-Galindo
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720 Mexico City, Mexico
| | - Rafael Barrientos
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Alberto Alatorre
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Enrique Querejeta
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - José G Trujillo-Ferrara
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico
| | - Eunice D Farfán-García
- Departamento de Bioquímica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico.
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Alc. Miguel Hidalgo, 11340 Mexico City, Mexico.
| |
Collapse
|
5
|
Köktürk M, Yildirim S, Yiğit A, Ozhan G, Bolat İ, Alma MH, Menges N, Alak G, Atamanalp M. What is the eco-toxicological level and effects of graphene oxide-boramidic acid (GO-ED-BA NP) ?: In vivo study on Zebrafish embryo/larvae. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108443. [DOI: 10.1016/j.jece.2022.108443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
6
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt
II
Complexes That Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022; 61:e202207310. [DOI: 10.1002/anie.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seok Gyu Kang
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Yumi Cho
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima 739-8527 Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Faculty of Textile Science and Technology Shinshu University Nagano 386-8567 Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| |
Collapse
|
7
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt(II) Complexes that Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seok Gyu Kang
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Ka Young Kim
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Yumi Cho
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Dong Yeun Jeong
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Ji Ha Lee
- Hiroshima University: Hiroshima Daigaku Chemical Engineering Program KOREA, REPUBLIC OF
| | - Tomoki Nishimura
- Shinshu Daigaku Department of Chemistry and Materials KOREA, REPUBLIC OF
| | - Shim Sung Lee
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Sang Kyu Kwak
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Youngmin You
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Jong Hwa Jung
- Gyeongsang National University Department of Chemistry Gyeongsang National University 501 jinjudaero 52828 Jinju KOREA, REPUBLIC OF
| |
Collapse
|