1
|
Elizalde V, Mirazo S, Romero AH, Alvarez G. In vitro antiviral activity of favipiravir and its 6- and 3-O-substituted derivatives against coronavirus: Acetylation leads to improvement of antiviral activity. Arch Pharm (Weinheim) 2024; 357:e2300494. [PMID: 37853660 DOI: 10.1002/ardp.202300494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Favipiravir is currently approved for the treatment of the influenza virus and has shown encouraging results in terms of antiviral capacity in clinical studies against severe acute respiratory syndrome coronavirus 2. Favipiravir is a prodrug, where its favipiravir-ribofuranosyl-5B-triphosphate metabolite is capable of blocking RNA replication of the virus. However, the antiviral efficiency of favipiravir is limited by two factors: (i) low accumulation in plasma and rapid excretion/elimination post-administration and (ii) low conversion rate into the active metabolite. To tackle these problems, herein, we have designed new favipiravir analogues focusing on the replacement of the fluorine atom at the 6-position by halogen or hydrogen atoms and 3-O-functionalization with labile groups. The first type of functionalization seeks to increase the antiviral activity because of the better ability of the keto-tautomer as a function of the halogen, and it is hypothesized that the keto-tautomer tends to promote the formation of the ribofuranosyl-5B-triphosphate (RTP) metabolite. Meanwhile, the second type of functionalization seeks to promote lipophilicity and increase accumulation in cells. From the in vitro antiviral activity against two coronavirus models (bovine and human 229E), it was identified that the replacement did not improve the antiviral activity against both the models, which seems to be attributable to the low water solubility of these new 6-functionalized analogues. Meanwhile, with 3-O-functionalization, acetylation provided the most active compounds with higher half-maximal inhibitory concentration and selectivity than favipiravir, whereas benzylation/methanosulfonation yielded the least active compounds. In summary, acetylation is found to be a convenient functionalization to enhance the antiviral profile of favipiravir.
Collapse
Affiliation(s)
- Valeria Elizalde
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Mirazo
- Depertamento de Bacteriología y Virología. Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Guzman Alvarez
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| |
Collapse
|
2
|
Romero AH, Fuentes G, Suescun L, Piro O, Echeverría G, Gotopo L, Pezaroglo H, Álvarez G, Cabrera G, Cerecetto H, Couto M. Tautomerism and Rotamerism of Favipiravir and Halogenated Analogues in Solution and in the Solid State. J Org Chem 2023; 88:10735-10752. [PMID: 37452781 DOI: 10.1021/acs.joc.3c00777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Favipiravir is an important selective antiviral against RNA-based viruses, and currently, it is being repurposed as a potential drug for the treatment of COVID-19. This type of chemical system presents different carboxamide-rotameric and hydroxyl-tautomeric states, which could be essential for interpreting its selective antiviral activity. Herein, the tautomeric 3-hydroxypyrazine/3-pyrazinone pair of favipiravir and its 6-substituted analogues, 6-Cl, 6-Br, 6-I, and 6-H, were fully investigated in solution and in the solid state through ultraviolet-visible, 1H nuclear magnetic resonance, infrared spectroscopy, and X-ray diffraction techniques. Also, a study of the gas phase was performed using density functional theory calculations. In general, the keto-enol balance in these 3-hydroxy-2-pyrazinecarboxamides is finely modulated by external and internal electrical variations via changes in solvent polarity or by replacement of substituents at position 6. The enol tautomer was prevalent in an apolar environment, whereas an increase in the level of the keto tautomer was favored by an increase in solvent polarity and, even moreso, with a strong hydrogen-donor solvent. Keto tautomerization was favored either in solution or in the solid state with a decrease in 6-substituent electronegativity as follows: H ≫ I ≈ Br > Cl ≥ F. Specific rotameric states based on carboxamide, "cisoide" and "transoide", were identified for the enol and keto tautomer, respectively; their rotamerism is dependent on the tautomerism and not the aggregation state.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Germán Fuentes
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Leopoldo Suescun
- Cryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Oscar Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Gustavo Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Lourdes Gotopo
- Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, 1040 Caracas, Venezuela
| | - Horacio Pezaroglo
- Laboratorio de Resonancia Magnética Nuclear, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Guzmán Álvarez
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, 60000 Paysandú, Uruguay
| | - Gustavo Cabrera
- Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, 1040 Caracas, Venezuela
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Marcos Couto
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
3
|
Manjunath R, Gaonkar SL, Saleh EAM, Husain K. A comprehensive review on Covid-19 Omicron (B.1.1.529) variant. Saudi J Biol Sci 2022; 29:103372. [PMID: 35855306 PMCID: PMC9284530 DOI: 10.1016/j.sjbs.2022.103372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
The world has been combating different variants of SARS-COV-19 since its first outbreak in Wuhan city. SARS-COV-19 is caused by the coronavirus. The corona virus mutates and becomes more transmissible than earlier variants as the day passes. Till 24 November 2021, SARS-COV-19 has four variants Alpha, Beta, Gamma, and Delta, respectively. Among them, the delta variant caused severe havoc across the world. South Africa registered a new variant with the World Health Organization (WHO) on 24 November 2021, which is much more transmissible than previous variants. The WHO classified it as a variant of concern (VOC) on 26 November 2021 and called it the Greek letter Omicron (B.1.1.529), the fifteenth letter in the alphabet. Here a serious attempt was made to comprehend the omicron variant's origin, nomenclature, characteristics, mutations, the difference between delta and omicron variant, epidemiology, transmission, clinical features, impact on immunity, immune evasion, vaccines efficacy, etc.
Collapse
Affiliation(s)
- R Manjunath
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Santosh L. Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Kakul Husain
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| |
Collapse
|