1
|
Huertas-Alonso AJ, González-Serrano DJ, Salgado-Ramos M, Hadidi M, Sánchez-Verdú P, Cabañas B, Chuck CJ, Clark JH, Moreno A. Sustainable Microwave-Assisted Synthesis of Medium- and Long-Chain Alkyl Levulinates from Biomass-Derived Levulinic Acid. CHEMSUSCHEM 2025; 18:e202402508. [PMID: 40008462 DOI: 10.1002/cssc.202402508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Alkyl levulinates (ALs) represent a family of bio-compounds derived from levulinic acid (LA), a platform chemical obtained from lignocellulosic biomass. Medium- and long-chain ALs (pentyl levulinate or longer) have shown potential as biofuel and fuel additives due to their relatively low oxygen content and resemblance to biodiesel. This study reports a fast and environmentally friendly method for synthesizing ALs via microwave (MW)-assisted LA esterification, laying emphasis on medium- and long-chain ALs. By combining p-toluenesulfonic acid (5 wt % loading) as catalyst and MW radiation as heating source for a short time (5 minutes), excellent yields of ALs (≥89 mol %) were achieved for a wide range of primary and secondary alcohols (2-10 carbons), overcoming the expected lower reactivity of long chain alcohols. Additionally, formation of undesired side products, such as dialkyl ethers or LA aldol condensation products, was significantly minimized. The feasibility of recovering the unreacted alcohol was successfully proved by simple distillation (88 wt % recovery). The green chemistry metrics assessment proved that this approach aligns with the green chemistry principles and the United Nations Sustainable Development Goals, offering a more sustainable pathway for biofuel and fuel additive production.
Collapse
Affiliation(s)
- Alberto J Huertas-Alonso
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela n°10, 13005, Ciudad Real, Spain
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
- Present address: Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Diego J González-Serrano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela n°10, 13005, Ciudad Real, Spain
| | - Manuel Salgado-Ramos
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela n°10, 13005, Ciudad Real, Spain
- Present address: Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València, 46100, Spain
| | - Milad Hadidi
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela n°10, 13005, Ciudad Real, Spain
| | - Prado Sánchez-Verdú
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela n°10, 13005, Ciudad Real, Spain
| | - Beatriz Cabañas
- Instituto de Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13005, Ciudad Real, Spain
| | - Christopher J Chuck
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom
| | - James H Clark
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, Heslington, York, YO10 5DD, UK
| | - Andrés Moreno
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela n°10, 13005, Ciudad Real, Spain
| |
Collapse
|
2
|
Levulinic Acid Is a Key Strategic Chemical from Biomass. Catalysts 2022. [DOI: 10.3390/catal12080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Levulinic acid (LA) is one of the top twelve chemicals listed by the US Department of Energy that can be derived from biomass. It serves as a building block and platform chemical for producing a variety of chemicals, fuels and materials which are currently produced in fossil based refineries. LA is a key strategic chemical, as fuel grade chemicals and plastic substitutes can be produced by its catalytic conversion. LA derivatisation to various product streams, such as alkyl levulinates via esterification, γ-valerolactone via hydrogenation and N-substituted pyrrolidones via reductive amination and many other transformations of commercial utility are possible owing to the two oxygen functionalities, namely, carbonyl and carboxyl groups, present within the same substrate. Various biomass feedstock, such as agricultural wastes, marine macroalgae, and fresh water microalgae were successfully converted to LA in high yields. Finding a substitute to mineral acid catalysts for the conversion of biomass to LA is a challenge. The use of an ultrasound technique facilitated the production of promising nano-solid acid catalysts including Ga salt of molybophosphoric acid and Ga deposited mordenite zeolite, with optimum amounts of Lewis and Bronsted acidities needed for the conversion of glucose to LA in high yields, being 56 and 59.9 wt.% respectively. Microwave irradiation technology was successfully utilized for the accelerated production of LA (53 wt.%) from glucose in a short duration of 6 min, making use of the unique synergistic catalytic activity of ZnBr2 and HCl.
Collapse
|