1
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
3
|
Meoto S, Kent N, Nigra MM, Coppens MO. Mesostructure of Mesoporous Silica/Anodic Alumina Hierarchical Membranes Tuned with Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4823-4832. [PMID: 28437111 DOI: 10.1021/acs.langmuir.7b00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hierarchically structured membranes composed of mesoporous silica embedded inside the channels of anodic alumina (MS-AAM) were synthesized using the aspiration method. Ethanol is shown to have a significant effect on the type and organization of the mesoporous silica phase. Detailed textural analysis revealed that the pore size distribution of the mesoporous silica narrows and the degree of ordering increases with decreasing ethanol concentration used in the synthesis mixture. The silica mesopores were synthesized with pores as small as 6 nm in diameter, with the channel direction oriented in lamellar, circular, and columnar directions depending on the ethanol content. This study reveals ethanol concentration as a key factor behind the synthesis of an ordered mesoporous silica-anodic alumina membrane that can increase its functionality for membrane-based applications.
Collapse
Affiliation(s)
- Silo Meoto
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| | - Niall Kent
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| | - Michael M Nigra
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| | - Marc-Olivier Coppens
- Department of Chemical Engineering, University College London , Torrington Place, London, United Kingdom WC1E 7JE
| |
Collapse
|
4
|
Aboelmagd A, El-Safty SA, Shenashen MA, Elshehy EA, Khairy M, Sakaic M, Yamaguchi H. Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing. Chem Asian J 2015; 10:2467-78. [PMID: 26178184 DOI: 10.1002/asia.201500565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 01/12/2023]
Abstract
Nanomembrane canister-like architectures were fabricated by using hexagonal mesocylinder-shaped aluminosilica nanotubes (MNTs)-porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm-long membrane channel enabled the creation of unique canister-like channel necks and cavities. The open-tubular canister architecture design provides controllable, reproducible, and one-step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO3(2-)) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low-level detection limit of 0.0093 μM. Real analytical data showed that approximately 96% of SeO3(2-) anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water.
Collapse
Affiliation(s)
- Ahmed Aboelmagd
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan). , .,Graduate School for Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan). ,
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Emad A Elshehy
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Mohamed Khairy
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Masaru Sakaic
- Centre for Research in Isotopes & Environmental Dynamics, Tsukuba University, 265-38 Shin Makita, Tsukuba-shi, Ibaraki, 305-0076, Japan
| | - Hitoshi Yamaguchi
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| |
Collapse
|
5
|
Derbalah A, El-Safty SA, Shenashen MA, Khairy M. Hierarchical Nanohexagon Ceramic Sheet Layers as Platform Adsorbents for Hydrophilic and Hydrophobic Insecticides from Agricultural Wastewater. Chempluschem 2015; 80:1769-1778. [DOI: 10.1002/cplu.201500244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Aly Derbalah
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
- Pesticides Chemistry and Toxicology Department; Faculty of Agriculture; Kafr El-Sheikh University; Egypt
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
- Graduate School for Advanced Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku-ku Tokyo 169-8555 Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
| | - Mohamed Khairy
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
- Chemistry Department; Sohag University; Egypt
| |
Collapse
|
6
|
El-Safty SA, Sakai M, Selim MM, Alhamid AA. Mesotubular-Structured Hybrid Membrane Nanocontainer for Periodical Monitoring, Separation, and Recovery of Cobalt Ions from Water. Chem Asian J 2015; 10:1909-18. [DOI: 10.1002/asia.201500421] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Sherif A. El-Safty
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukuba-shi, Ibaraki-ken 05-0047 Japan
- Graduate School for Advanced Science and Engineering; Waseda University; 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Masaru Sakai
- Centre for Research in Isotopes & Environmental Dynamics; Tsukuba University; 265-38 Shin Makita Tsukuba-shi, Ibaraki 305-0076 Japan
| | - Mahmoud M. Selim
- Department of Mathematics & Physics; Al-Aflaj College of Science and Human Studies; Prince Sattam AbdulAziz University; Al-Aflaj 710-11912 Saudi Arabia
| | | |
Collapse
|
7
|
El-Safty SA, Sakai M, Selim MM, Hendi AA. Mesosponge Optical Sinks for Multifunctional Mercury Ion Assessment and Recovery from Water Sources. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13217-31. [PMID: 25965073 DOI: 10.1021/acsami.5b02969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Using the newly developed organic-inorganic colorant membrane is an attractive approach for the optical detection, selective screening and removal, and waste management recovery of highly toxic elements, such as Hg(II) ions, from water sources. In the systematic mesosponge optical sinks (MOSs), anchoring organic colorants into 3D, well-defined cage cavities and interconnected tubular pores (10 nm) in the long microscale channels of membrane scaffolds enhances the requirements and intrinsic properties of the hierarchal membrane. This scalable design is the first to allow control of the multifunctional processes of a membrane in a one-step screening procedure, such as the detection/recognition, removal, and filtration of ultratrace Hg(II) ions, even from actual water sources (i.e., tap, underground). The selective recovery, detection, and extraction processes of Hg(II) ions in a heterogeneous mixture with inorganic cations and anions as well as organic molecules and surfactants are mainly dependent on the structure of the colorant agent, the pH conditions, competitive ion-system compositions and concentrations, and Hg-to-colorant binding events. Our result shows that the solid MOS membrane arrays can be repeatedly recycled and retain their hierarchal mesosponge sink character, avoiding fouling via the precipitation of metal salts as a result of the reuse cycle. The Hg(II) ion rejection and the permeation of nonselective elements based on the membrane filtration protocol may be key considerations in water purification and separation requirements. The selective recovery process of Hg(II) ions in actual contaminated samples collected from tap and underground water sources in Saudi Arabia indicates the practical feasibility of our designed MOS membrane arrays.
Collapse
Affiliation(s)
- Sherif A El-Safty
- †National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken, 05-0047, Japan
- ‡Graduate School for Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | | | - Mahmoud M Selim
- ∥Department of Mathematics, Al-Aflaj College of Science and Human Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia
| | - Awatif A Hendi
- ⊥Department of Physics, College of Science and Humanities-Hawtat Bani Tamim, Prince Sattam Bin Abdulaziz University, Hawtat Bani Tamim, Saudi Arabia
| |
Collapse
|
8
|
Derbalah A, El-Safty SA, Shenashen MA, Abdel Ghany NA. Mesoporous Alumina Nanoparticles as Host Tunnel-like Pores for Removal and Recovery of Insecticides from Environmental Samples. Chempluschem 2015; 80:1119-1126. [DOI: 10.1002/cplu.201500098] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/07/2022]
|
9
|
El-Safty SA, Sakai M, Selim MM, Alhamide AA. One-pot layer casting-guided synthesis of nanospherical aluminosilica@organosilica@alumina core–shells wrapping colorant dendrites for environmental application. RSC Adv 2015. [DOI: 10.1039/c5ra10324j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Wrapping of dendritic colorant aggregates around core–double shell cavities afforded a container vehicle tracking architecture for recovering toxins in environments.
Collapse
Affiliation(s)
- Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Tsukuba-shi
- Japan
- Graduate School for Advanced Science and Engineering
- Waseda University
| | - Masaru Sakai
- Centre for Research in Isotopes & Environmental Dynamics
- Tsukuba University
- Tsukuba-shi
- Japan
| | - Mahmoud M. Selim
- Department of Mathematics & Physics
- Al-Aflaj College of Science and Human Studies
- Prince Sattam Bin Abdulaziz University
- Al-Aflaj 710-11912
- Saudi Arabia
| | | |
Collapse
|
10
|
Selim MS, El-Safty SA, El-Sockary MA, Hashem AI, Abo Elenien OM, EL-Saeed AM, Fatthallah NA. Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling. RSC Adv 2015. [DOI: 10.1039/c5ra07400b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A non-toxic foul-release model of silicone/spherical AgNP hybrid nanocomposites with enhanced hydrophobicity, self-cleaning, and marine fouling release performance.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Tsukubashi
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Tsukubashi
- Japan
- Graduate School for Advanced Science and Engineering
- Waseda University
| | - Maher A. El-Sockary
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed I. Hashem
- Chemistry Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | | | - Ashraf M. EL-Saeed
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | | |
Collapse
|
11
|
Selim MS, El-Safty SA, El-Sockary MA, Hashem AI, Abo Elenien OM, EL-Saeed AM, Fatthallah NA. Tailored design of Cu2O nanocube/silicone composites as efficient foul-release coatings. RSC Adv 2015. [DOI: 10.1039/c5ra01597a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental concerns about the use of toxic antifoulants have increased the demand to develop novel, environmentally-friendly antifouling materials.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Tsukubashi
- Japan
- Petroleum Application Department, Egyptian Petroleum Research Institute
- Cairo
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Tsukubashi
- Japan
- Graduate School for Advanced Science and Engineering
- Waseda University
| | - Maher A. El-Sockary
- Petroleum Application Department, Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed I. Hashem
- Chemistry Department
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | | | - Ashraf M. EL-Saeed
- Petroleum Application Department, Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | | |
Collapse
|
12
|
Shenashen MA, El-Safty SA, Elshehy EA, Khairy M. Hexagonal-Prism-Shaped Optical Sensor/Captor for the Optical Recognition and Sequestration of PdIIIons from Urban Mines. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402756] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
|
14
|
Shenashen MA, El-Safty SA, Elshehy EA. Monolithic scaffolds for highly selective ion sensing/removal of Co(ii), Cu(ii), and Cd(ii) ions in water. Analyst 2014; 139:6393-405. [DOI: 10.1039/c4an00980k] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning. J Colloid Interface Sci 2014; 425:136-42. [DOI: 10.1016/j.jcis.2014.03.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
|
16
|
Khairy M, El-Safty SA. Selective encapsulation of hemoproteins from mammalian cells using mesoporous metal oxide nanoparticles. Colloids Surf B Biointerfaces 2013; 111:460-8. [DOI: 10.1016/j.colsurfb.2013.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
|
17
|
Shenashen MA, El-Safty SA, Elshehy EA. Architecture of optical sensor for recognition of multiple toxic metal ions from water. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:833-843. [PMID: 23856314 DOI: 10.1016/j.jhazmat.2013.06.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability.
Collapse
Affiliation(s)
- M A Shenashen
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | | | | |
Collapse
|
18
|
Khairy M, El-Safty SA, Shenashen MA, Elshehy EA. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood. NANOSCALE 2013; 5:7920-7927. [PMID: 23851402 DOI: 10.1039/c3nr02403b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The highly toxic properties, bioavailability, and adverse effects of Pb(2+) species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb(2+) concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb(2+) ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb(2+) ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.
Collapse
Affiliation(s)
- Mohamed Khairy
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | | | | | | |
Collapse
|
19
|
Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
El-Safty SA, Shenashen MA, Shahat A. Tailor-made micro-object optical sensor based on mesoporous pellets for visual monitoring and removal of toxic metal ions from aqueous media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2288-2296. [PMID: 23359538 DOI: 10.1002/smll.201202407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Methods for the continuous monitoring and removal of ultra-trace levels of toxic inorganic species (e.g., mercury, copper, and cadmium ions) from aqueous media such as drinking water and biological fluids are essential. In this paper, the design and engineering of a simple, pH-dependent, micro-object optical sensor is described based on mesoporous aluminosilica pellets with an adsorbed dressing receptor (a porphyrinic chelating ligand). This tailor-made optical sensor permits ultra-fast (≤ 60 s), specific, pH-dependent visualization and removal of Cu(2+) , Cd(2+) , and Hg(2+) at sub-picomolar concentrations (∼10(-11) mol dm(-3) ) from aqueous media, including drinking water and a suspension of red blood cells. The acidic active acid sites of the pellets consist of heteroatoms arranged around uniformly shaped pores in 3D nanoscale gyroidal mesostructures densely coated with the chelating ligand. The sensor can be used in batch mode, as well as in a flow-through system in which sampling, target ion recognition and removal, and analysis are integrated in a highly automated and efficient manner. Because the pellets exhibit long-term stability, reproducibility, and versatility over a number of analysis/regeneration cycles, they can be expected to be useful for the fabrication of inexpensive sensor devices for naked-eye detection of toxic pollutants.
Collapse
Affiliation(s)
- Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 05-0047, Japan.
| | | | | |
Collapse
|
21
|
Bae C, Kim H, Yang Y, Yoo H, Montero Moreno JM, Bachmann J, Nielsch K, Shin H. Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates. NANOSCALE 2013; 5:5825-5832. [PMID: 23695271 DOI: 10.1039/c3nr00906h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications.
Collapse
Affiliation(s)
- Changdeuck Bae
- Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Das SK, El-Safty SA. Development of Mesoscopically Assembled Sulfated Zirconia Nanoparticles as Promising Heterogeneous and Recyclable Biodiesel Catalysts. ChemCatChem 2013. [DOI: 10.1002/cctc.201300192] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
El‐Safty SA, Abdellatef S, Ismael M, Shahat A. Optical nanosphere sensor based on shell-by-shell fabrication for removal of toxic metals from human blood. Adv Healthc Mater 2013; 2:854-62. [PMID: 23307510 DOI: 10.1002/adhm.201200326] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/26/2012] [Indexed: 11/10/2022]
Abstract
Because toxic heavy metals tend to bioaccumulate, they represent a substantial human health hazard. Various methods are used to identify and quantify toxic metals in biological tissues and environment fluids, but a simple, rapid, and inexpensive system has yet to be developed. To reduce the necessity for instrument-dependent analysis, we developed a single, pH-dependent, nanosphere (NS) sensor for naked-eye detection and removal of toxic metal ions from drinking water and physiological systems (i.e., blood). The design platform for the optical NS sensor is composed of double mesoporous core-shell silica NSs fabricated by one-pot, template-guided synthesis with anionic surfactant. The dense shell-by-shell NS construction generated a unique hierarchical NS sensor with a hollow cage interior to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, longevity, selectivity, and signal stability. Here, we examined the application of the NS sensor for the removal of toxic metals (e.g., lead ions from a physiological system, such as human blood). The findings show that this sensor design has potential for the rapid screening of blood lead levels so that the effects of lead toxicity can be avoided.
Collapse
Affiliation(s)
- S. A. El‐Safty
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
- Graduate School for Advanced Science and Engineering, Waseda University, 3‐4‐1, Okubo, Shinjuku‐ku, Tokyo 169‐8555, Japan
| | - S. Abdellatef
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
| | - M. Ismael
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
| | - A. Shahat
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
| |
Collapse
|
24
|
Yang ST, Liu Y, Wang YW, Cao A. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1635-1653. [PMID: 23341247 DOI: 10.1002/smll.201201492] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/28/2012] [Indexed: 06/01/2023]
Abstract
The protein-nanoparticle (NP) interface is a current frontier of multiple disciplines, full of challenges and opportunities. The unique behaviors of nanomaterials (NMs) bring many exciting applications, and also raise safety concerns. Beyond bioapplications, various NMs could also enter human bodies from the environment. When entering human bodies, NPs interact with various biomolecules, especially proteins, forming a protein corona. This protein-NP complex is what the biosystems 'see' and 'respond to'. Therefore, understanding how NPs interact with proteins is crucial for both bioapplications and the biosafety of NMs. In this review, the current understanding of protein-NP interactions is summarized, including the theoretical background, experimental results, and computational progresses. Guidelines for improving bioapplication performance and reducing the potential biosafety hazard of NMs by designing the protein-NP interactions are discussed, along with future directions and challenges in this exciting field.
Collapse
Affiliation(s)
- Sheng-Tao Yang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | | | | | | |
Collapse
|
25
|
Bioadsorption of proteins on large mesocage-shaped mesoporous alumina monoliths. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Khairy M, El-Safty SA. Mesoporous NiO nanoarchitectures for electrochemical energy storage: influence of size, porosity, and morphology. RSC Adv 2013. [DOI: 10.1039/c3ra44465a] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
El-Safty SA, Hoa ND, Shenashen MA. Topical Developments of Nanoporous Membrane Filters for Ultrafine Noble Metal Nanoparticles. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
El-Safty SA, Shenashen MA, Khairy M. Optical detection/collection of toxic Cd(II) ions using cubic Ia3d aluminosilica mesocage sensors. Talanta 2012; 98:69-78. [DOI: 10.1016/j.talanta.2012.06.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
|
29
|
El-Safty SA, Shenashen MA, Ismael M, Khairy M. Encapsulation of proteins into tunable and giant mesocage alumina. Chem Commun (Camb) 2012; 48:6708-10. [PMID: 22627879 DOI: 10.1039/c2cc30725a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein bioadsorption has rapidly attracted attention partially because of the promising advances in diagnostic assays, sensors, separations, and gene technology. Tunable and giant mesocage alumina cavities (5 nm to 20 nm) show capability in size-selective encapsulation and diffusivity of large proteins into interior pores.
Collapse
Affiliation(s)
- Sherif A El-Safty
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan.
| | | | | | | |
Collapse
|
30
|
El-Safty SA, Shahat A, Ismael M. Mesoporous aluminosilica monoliths for the adsorptive removal of small organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2012; 201-202:23-32. [PMID: 22169140 DOI: 10.1016/j.jhazmat.2011.10.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 10/19/2011] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Water treatment for the removal of organic or inorganic pollutants has become a serious global issue because of the increasing demand for public health awareness and environmental quality. The current paper, reports the applicability of mesoporous aluminosilica monoliths with three-dimensional structures and aluminum contents with 19≤Si/Al≥1 as effective adsorbents of organic molecules from an aqueous solution. Mesocage cubic Pm3n aluminosilica monoliths were successfully fabricated using a simple, reproducible, and direct synthesis. The acidity of the monoliths significantly increased with increasing amounts of aluminum species in the silica pore framework walls. The batch adsorption of the organic pollutants onto (10 g/L) aluminosilica monoliths was performed in an aqueous solution at various temperatures. These adsorbents exhibit efficient removal of organic pollutants (e.g., aniline, p-chloroaniline, o-aminophenol, and p-nitroaniline) of up to 90% within a short period (in the order of minutes). In terms of proximity adsorption, the functional acid sites and the condensed and rigid monoliths with tunable periodic scaffolds of the cubic mesocages are useful in providing easy-to-use removal assays for organic compounds and reusable adsorbents without any mesostructural damage, even under chemical treatment for a number of repeated cycles.
Collapse
Affiliation(s)
- Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan.
| | | | | |
Collapse
|
31
|
Guo L, Fan Y, Teramae N. Vapor phase synthesis of mesoporous silica rods within the pores of alumina membranes. NEW J CHEM 2012. [DOI: 10.1039/c2nj00004k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Hoa ND, El-Safty SA. Gas nanosensor design packages based on tungsten oxide: mesocages, hollow spheres, and nanowires. NANOTECHNOLOGY 2011; 22:485503. [PMID: 22071572 DOI: 10.1088/0957-4484/22/48/485503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Achieving proper designs of nanosensors for highly sensitive and selective detection of toxic environmental gases is one of the crucial issues in the field of gas sensor technology, because such designs can lead to the enhancement of gas sensor performance and expansion of their applications. Different geometrical designs of porous tungsten oxide nanostructures, including the mesocages, hollow spheres and nanowires, are synthesized for toxic gas sensor applications. Nanosensor designs with small crystalline size, large specific surface area, and superior physical characteristics enable the highly sensitive and selective detection of low concentration (ppm levels), highly toxic NO(2) among CO, as well as volatile organic compound gases, such as acetone, benzene, and ethanol. The experimental results showed that the sensor response was not only dependent on the specific surface area, but also on the geometries and crystal size of materials. Among the designed nanosensors, the nanowires showed the highest sensitivity, followed by the mesocages and hollow spheres-despite the fact that mesocages had the largest specific surface area of 80.9 m(2) g( - 1), followed by nanowires (69.4 m(2) g( - 1)), and hollow spheres (6.5 m(2) g( - 1)). The nanowire sensors had a moderate specific surface area (69.4 m(2) g( - 1)) but they exhibited the highest sensitivity because of their small diameter (∼5 nm), which approximates the Debye length of WO(3). This led to the depletion of the entire volume of the nanowires upon exposure to NO(2), resulting in an enormous increase in sensor resistance.
Collapse
Affiliation(s)
- Nguyen Duc Hoa
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki, Japan
| | | |
Collapse
|
33
|
Feng D, Lv Y, Wu Z, Dou Y, Han L, Sun Z, Xia Y, Zheng G, Zhao D. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 2011; 133:15148-56. [PMID: 21854032 DOI: 10.1021/ja2056227] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report for the first time the synthesis of free-standing mesoporous carbon films with highly ordered pore architecture by a simple coating-etching approach, which have an intact morphology with variable sizes as large as several square centimeters and a controllable thickness of 90 nm to ∼3 μm. The mesoporous carbon films were first synthesized by coating a resol precursors/Pluronic copolymer solution on a preoxidized silicon wafer and forming highly ordered polymeric mesostructures based on organic-organic self-assembly, followed by carbonizing at 600 °C and finally etching of the native oxide layer between the carbon film and the silicon substrate. The mesostructure of this free-standing carbon film is confirmed to be an ordered face-centered orthorhombic Fmmm structure, distorted from the (110) oriented body-centered cubic Im3̅m symmetry. The mesoporosity of the carbon films has been evaluated by nitrogen sorption, which shows a high specific BET surface area of 700 m(2)/g and large uniform mesopores of ∼4.3 nm. Both mesostructures and pore sizes can be tuned by changing the block copolymer templates or the ratio of resol to template. These free-standing mesoporous carbon films with cracking-free uniform morphology can be transferred or bent on different surfaces, especially with the aid of the soft polymer layer transfer technique, thus allowing for a variety of potential applications in electrochemistry and biomolecule separation. As a proof of concept, an electrochemical supercapacitor device directly made by the mesoporous carbon thin films shows a capacitance of 136 F/g at 0.5 A/g. Moreover, a nanofilter based on the carbon films has shown an excellent size-selective filtration of cytochrome c and bovine serum albumin.
Collapse
Affiliation(s)
- Dan Feng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
El-Safty SA. Designs for size-exclusion separation of macromolecules by densely-engineered mesofilters. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
El-Safty SA, Ismail AA, Shahat A. Optical supermicrosensor responses for simple recognition and sensitive removal of Cu (II) Ion target. Talanta 2011; 83:1341-51. [DOI: 10.1016/j.talanta.2010.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 12/13/2022]
|
36
|
Mekawy MM, Yamaguchi A, El-Safty SA, Itoh T, Teramae N. Mesoporous silica hybrid membranes for precise size-exclusive separation of silver nanoparticles. J Colloid Interface Sci 2010; 355:348-58. [PMID: 21237463 DOI: 10.1016/j.jcis.2010.11.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
One-dimensional (1D) nanomaterials have unique applications due to their inherent physical properties. In this study, hexagonally ordered mesoporous silica hybrid anodic alumina membranes (AAM) were synthesized using template-guided synthesis with a number of nonionic n-alkyl-oligo(ethylene oxide), Brij-type (C(x)EO(y)), which are surfactants that have different molecular sizes and characteristics. The hexagonal mesoporous silicas are vertically aligned in the AAM channels with a predominantly columnar orientation. The hollow mesostructured silicas had tunable pore diameters varying from 3.7 to 5.1 nm. In this synthesis protocol, the surfactant molecular natures (corona/core features) are important for the controlled generation of ordered structures throughout AAM channels. The development of ultrafiltration membranes composed of silica mesostructures could be used effectively in separating silver nanoparticles (Ag NPs) in both aqueous and organic solution phases. This would be relevant to the production of well-defined Ag NPs with unique properties. To create a size-exclusive separation system of Ag NPs, we grafted hydrophobic trimethylsilyl (TMS) groups onto the inner pores of the mesoporous silica hybrid AAM. The immobilization of the TMS groups allowed the columnar mesoporous silica inside AAM to retain this inner pore order without distortion during the separation of solution-phase Ag NPs in organic solvents that may cause tortuous-pore membranes. Mesoporous TMS-silicas inside 1D AAM channels were applicable as a size-exclusive separation system to isolate organic solution-phase Ag NPs of uniform morphology and size.
Collapse
Affiliation(s)
- Moataz M Mekawy
- National Institute for Materials Science, Exploratory Materials Research Laboratory for Energy and Environment, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | | | | | | | | |
Collapse
|