1
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Andrews J, Blaisten-Barojas E. Distinctive Formation of PEG-Lipid Nanopatches onto Solid Polymer Surfaces Interfacing Solvents from Atomistic Simulation. J Phys Chem B 2021; 126:1598-1608. [PMID: 34933557 DOI: 10.1021/acs.jpcb.1c07490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interface between solid poly(lactic acid-co-glycolic acid), PLGA, and solvents is described by large-scale atomistic simulations for water, ethyl acetate, and the mixture of them at ambient conditions. Interactions at the interface are dominated by Coulomb forces for water and become overwhelmingly dispersive for the other two solvents. This effect drives a neat liquid-phase separation of the mixed solvent, with ethyl acetate covering the PLGA surface and water being segregated away from it. We explore with all-atom Molecular Dynamics the formation of macromolecular assemblies on the surface of the PLGA-solvent interface when DSPE-PEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)n amine, is added to the solvent. By following in time the deposition of the DSPE-PEG macromolecules onto the PLGA surface, the mechanism of how nanopatches remain adsorbed to the surface despite the presence of the solvent is probed. These patches have a droplet-like aspect when formed at the PLGA-water interface that flatten in the PLGA-ethyl acetate interface case. Dispersive forces are dominant for the nanopatch adhesion to the surface, while electrostatic forces are dominant for keeping the solvent around the new formations. Considering the droplet-like patches as wetting the PLGA surface, we predict an effective wetting behavior at the water interface that fades significantly at the ethyl acetate interface. The predicted mechanism of PEG-lipid nanopatch formation may be generally applicable for tailoring the synthesis of asymmetric PLGA nanoparticles for specific drug delivery conditions.
Collapse
Affiliation(s)
- James Andrews
- Center for Simulation and Modeling (formerly, Computational Materials Science Center) and Department of Computational and Data Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Estela Blaisten-Barojas
- Center for Simulation and Modeling (formerly, Computational Materials Science Center) and Department of Computational and Data Sciences, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
3
|
Li L, Patil D, Petruncio G, Harnden KK, Somasekharan JV, Paige M, Wang LV, Salvador-Morales C. Integration of Multitargeted Polymer-Based Contrast Agents with Photoacoustic Computed Tomography: An Imaging Technique to Visualize Breast Cancer Intratumor Heterogeneity. ACS NANO 2021; 15:2413-2427. [PMID: 33464827 PMCID: PMC8106867 DOI: 10.1021/acsnano.0c05893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One of the primary challenges in breast cancer diagnosis and treatment is intratumor heterogeneity (ITH), i.e., the coexistence of different genetically and epigenetically distinct malignant cells within the same tumor. Thus, the identification of ITH is critical for designing better treatments and hence to increase patient survival rates. Herein, we report a noninvasive hybrid imaging technology that integrates multitargeted and multiplexed patchy polymeric photoacoustic contrast agents (MTMPPPCAs) with single-impulse panoramic photoacoustic computed tomography (SIP-PACT). The target specificity ability of MTMPPPCAs to distinguish estrogen and progesterone receptor-positive breast tumors was demonstrated through both fluorescence and photoacoustic measurements and validated by tissue pathology analysis. This work provides the proof-of-concept of the MTMPPPCAs/SIP-PACT system to identify ITH in nonmetastatic tumors, with both high molecular specificity and real-time detection capability.
Collapse
Affiliation(s)
- Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Deepanjali Patil
- Department of Chemistry & Biochemistry, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Greg Petruncio
- Department of Chemistry & Biochemistry, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | | | - Jisha V. Somasekharan
- Research and Post Graduate Department of Chemistry, MES Keveeyam College, Valanchery, Kerala 676552, India
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carolina Salvador-Morales
- Department of Chemistry & Biochemistry, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| |
Collapse
|
4
|
Janus γ-Fe 2O 3/SiO 2-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy. Sci Bull (Beijing) 2020; 65:564-572. [PMID: 36659188 DOI: 10.1016/j.scib.2019.12.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/16/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023]
Abstract
Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2O3/SiO2 nanoparticles (JFSNs) are conjugated with glucose oxidase (GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors. GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4T1 mammary tumor growth with minimal adverse effects.
Collapse
|
5
|
Rabanel JM, Adibnia V, Tehrani SF, Sanche S, Hildgen P, Banquy X, Ramassamy C. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? NANOSCALE 2019; 11:383-406. [PMID: 30560970 DOI: 10.1039/c8nr04916e] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drug nanocarriers' surface chemistry is often presumed to be uniform. For instance, the polymer surface coverage and distribution of ligands on nanoparticles are described with averaged values obtained from quantification techniques based on particle populations. However, these averaged values may conceal heterogeneities at different levels, either because of the presence of particle sub-populations or because of surface inhomogeneities, such as patchy surfaces on individual particles. The characterization and quantification of chemical surface heterogeneities are tedious tasks, which are rather limited by the currently available instruments and research protocols. However, heterogeneities may contribute to some non-linear effects observed during the nanoformulation optimization process, cause problems related to nanocarrier production scale-up and correlate with unexpected biological outcomes. On the other hand, heterogeneities, while usually unintended and detrimental to nanocarrier performance, may, in some cases, be sought as adjustable properties that provide NPs with unique functionality. In this review, results and processes related to this issue are compiled, and perspectives and possible analytical developments are discussed.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Vahid Adibnia
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Soudeh F Tehrani
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Steven Sanche
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Patrice Hildgen
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Charles Ramassamy
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
6
|
Yi Y, Sanchez L, Gao Y, Lee K, Yu Y. Interrogating Cellular Functions with Designer Janus Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:1448-1460. [PMID: 31530969 PMCID: PMC6748339 DOI: 10.1021/acs.chemmater.6b05322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Janus particles have two distinct surfaces or compartments. This enables novel applications that are impossible with homogeneous particles, ranging from the engineering of active colloidal metastructures to creating multimodal therapeutic materials. Recent years have witnessed a rapid development of novel Janus structures and exploration of their applications, particularly in the biomedical arena. It, therefore, becomes crucial to understand how Janus particles with surface or structural anisotropy might interact with biological systems and how such interactions may be exploited to manipulate biological responses. This perspective highlights recent studies that have employed Janus particles as novel toolsets to manipulate, measure, and understand cellular functions. Janus particles have been shown to have biological interactions different from uniform particles. Their surface anisotropy has been used to control the cell entry of synthetic particles, to spatially organize stimuli for the activation of immune cells, and to enable direct visualization and measurement of rotational dynamics of particles in living systems. The work included in this perspective showcases the significance of understanding the biological interactions of Janus particles and the tremendous potential of harnessing such interactions to advance the development of Janus structure-based biomaterials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yu
- Corresponding Author (Y.Yu)
| |
Collapse
|
7
|
Salvador-Morales C, Brahmbhatt B, Márquez-Miranda V, Araya-Duran I, Canan J, Gonzalez-Nilo F, Vilos C, Cebral J, Mut F, Lohner R, Leong B, Sundaresan G, Zweit J. Mechanistic Studies on the Self-Assembly of PLGA Patchy Particles and Their Potential Applications in Biomedical Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7929-7942. [PMID: 27468612 DOI: 10.1021/acs.langmuir.6b02177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Currently, several challenges prevent poly(lactic-co-glycolic acid) (PLGA) particles from reaching clinical settings. Among these is a lack of understanding of the molecular mechanisms involved in the formation of these particles. We have been studying in depth the formation of patchy polymeric particles. These particles are made of PLGA and lipid-polymer functional groups. They have unique patch-core-shell structural features: hollow or solid hydrophobic cores and a patchy surface. Previously, we identified the shear stress as the most important parameter in a patchy particle's formation. Here, we investigated in detail the role of shear stress in the patchy particle's internal and external structure using an integrative experimental and computational approach. By cross-sectioning the multipatch particles, we found lipid-based structures embedded in the entire PLGA matrix, which represents a unique finding in the PLGA field. By developing novel computational fluid dynamics and molecular dynamics simulations, we found that the shear stress determines the internal structure of the patchy particles. Equally important, we discovered that these particles emit a photoacoustic (PA) signal in the optical clinical imaging window. Our results show that particles with multiple patches emit a higher PA signal than single-patch particles. This phenomenon most likely is due to the fact that multipatchy particles absorb more heat than single-patchy particles as shown by differential scanning calorimetry analysis. Furthermore, we demonstrated the use of patchy polymeric particles as photoacoustic molecular probes both in vitro and in vivo studies. The fundamental studies described here will help us to design more effective PLGA carriers for a number of medical applications as well as to accelerate their medical translation.
Collapse
Affiliation(s)
- C Salvador-Morales
- Bioengineering Department, George Mason University , 4400 University Drive, MS 1G5, Fairfax, Virginia 22030, United States
- Krasnow Institute for Advanced Study, George Mason University , 4400 University Drive, MS 2A1, Fairfax, Virginia 22030, United States
| | - Binal Brahmbhatt
- Bioengineering Department, George Mason University , 4400 University Drive, MS 1G5, Fairfax, Virginia 22030, United States
- Krasnow Institute for Advanced Study, George Mason University , 4400 University Drive, MS 2A1, Fairfax, Virginia 22030, United States
| | - V Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres Bello , Santiago, Chile 8370146
| | - I Araya-Duran
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres Bello , Santiago, Chile 8370146
| | - J Canan
- Fundación Fraunhofer Chile Research , M. Sanchez Fontecilla 310, Las Condes, Chile 7550296
| | - F Gonzalez-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres Bello , Santiago, Chile 8370146
| | - C Vilos
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres Bello , Santiago, Chile 8370146
- Center for Integrative Medicine and Innovative Science, Faculty of Medicine, Universidad Andres Bello , Santiago, Chile 8370146
| | - J Cebral
- Bioengineering Department, George Mason University , 4400 University Drive, MS 1G5, Fairfax, Virginia 22030, United States
- Krasnow Institute for Advanced Study, George Mason University , 4400 University Drive, MS 2A1, Fairfax, Virginia 22030, United States
| | - F Mut
- Bioengineering Department, George Mason University , 4400 University Drive, MS 1G5, Fairfax, Virginia 22030, United States
- Krasnow Institute for Advanced Study, George Mason University , 4400 University Drive, MS 2A1, Fairfax, Virginia 22030, United States
| | - R Lohner
- Center for Computational Fluid Dynamics, College of Sciences, George Mason University , Fairfax, Virginia 22030, United States
| | - B Leong
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University , Richmond, Virginia 23298, United States
| | - G Sundaresan
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University , Richmond, Virginia 23298, United States
| | - J Zweit
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University , Richmond, Virginia 23298, United States
| |
Collapse
|
8
|
Abstract
Janus particles, named after the two-faced Roman god Janus, have different surface makeups, structures or compartments on two sides. This review highlights recent advances in employing Janus particles as novel analytical tools for live cell imaging and biosensing. Unlike conventional particles used in analytical science, two-faced Janus particles provide asymmetry and directionality, and can combine different or even incompatible properties within a single particle. The broken symmetry enables imaging and quantification of rotational dynamics, revealing information beyond what traditional measurements offer. The spatial segregation of molecules on the surface of a single particle also allows analytical functions that would otherwise interfere with each other to be decoupled, opening up opportunities for novel multimodal analytical methods. We summarize here the development of Janus particles, a few general methods for their fabrication and, more importantly, the emerging and novel applications of Janus particles as multi-functional imaging probes and sensors.
Collapse
Affiliation(s)
- Yi Yi
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
9
|
Rasheed N, Khorasani AA, Cebral J, Mut F, Löhner R, Salvador-Morales C. Mechanisms Involved in the Formation of Biocompatible Lipid Polymeric Hollow Patchy Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6639-6648. [PMID: 26057588 DOI: 10.1021/acs.langmuir.5b01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Patchy polymeric particles have anisotropic surface domains that can be remarkably useful in diverse medical and industrial fields because of their ability to simultaneously present two different surface chemistries on the same construct. In this article, we report the mechanisms involved in the formation of novel lipid-polymeric hollow patchy particles during their synthesis. By cross-sectioning the patchy particles, we found that a phase segregation phenomenon occurs between the core, shell, and patch. Importantly, we found that the shear stress that the polymer blend undergoes during the particle synthesis is the most important parameter for the formation of these patchy particles. In addition, we found that the interplay of solvent-solvent, polymer-solvent, and polymer-polymer-solvent interactions generates particles with different surface morphologies. Understanding the mechanisms involved in the formation of patchy particles allows us to have a better control on their physicochemical properties. Therefore, these fundamental studies are critical to achieve batch control and scalability, which are essential aspects that must be addressed in any type of particle synthesis to be safely used in medicine.
Collapse
Affiliation(s)
- Nashaat Rasheed
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Ali A Khorasani
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Juan Cebral
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Fernando Mut
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Rainald Löhner
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| | - Carolina Salvador-Morales
- †Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
10
|
Dewi MR, Gschneidtner TA, Elmas S, Ranford M, Moth-Poulsen K, Nann T. Monofunctionalization and dimerization of nanoparticles using coordination chemistry. ACS NANO 2015; 9:1434-1439. [PMID: 25494037 DOI: 10.1021/nn5058408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper describes a strategy for controlled nanoparticle dimerization by using a solid support approach. Two types of nanoparticles have been linked by using a 5-([2,2':6',2″-terpyridine]-4'-yloxy)pentan-1-amine (terpy-amine) iron complex. The strategy includes two major steps: first, the monofunctionalization of individual nanoparticles with terpy-amine ligand molecules on a solid support, followed by release of monofunctionalized particles and subsequent dimerization. The versatility of the approach was demonstrated by dimerizing two different types of nanoparticles: spherical gold and cube-shaped iron oxide nanoparticles.
Collapse
Affiliation(s)
- Melissa R Dewi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Ian Wark Research Institute, University of South Australia , Mawson Lakes Boulevard, Adelaide, SA 5095, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Khorasani AA, Weaver JL, Salvador-Morales C. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques. Int J Nanomedicine 2014; 9:5729-51. [PMID: 25525356 PMCID: PMC4268909 DOI: 10.2147/ijn.s72479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent.
Collapse
Affiliation(s)
- Ali A Khorasani
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA, USA
- Bioengineering Department, George Mason University, Fairfax, VA, USA
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - James L Weaver
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Carolina Salvador-Morales
- Bioengineering Department, George Mason University, Fairfax, VA, USA
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
12
|
Zhao Y, Schapotschnikow P, Skajaa T, Vlugt TJH, Mulder WJM, de Mello Donegá C, Meijerink A. Probing lipid coating dynamics of quantum dot core micelles via Förster resonance energy transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1163-1170. [PMID: 24343988 DOI: 10.1002/smll.201301962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/07/2013] [Indexed: 06/03/2023]
Abstract
Lipid coated nanocrystal assemblies are among the most extensively investigated nanoparticle platforms for biomedical imaging and therapeutic purposes. However, very few efforts have been addressed to the lipid coating exchange dynamics in such systems, which is key to our understanding of the nanoparticles' coating stability and their interactions with the environment. Here, we apply the Förster resonance energy transfer (FRET) from quantum dot (QD) core to Cy5.5 dye labeled lipids at the surface to monitor the lipid exchange dynamics in situ and to study its dependence on concentration, temperature and solvent. A kinetic model is developed to describe the experimental data, allowing the rate constants and the activation energy for lipid exchange to be determined. The activation energy for lipid exchange on QD micelles is 155 kJ/mol in saline environment and 130 kJ/mol in pure water. The findings presented here provide basic knowledge on these self-assembled structures and contribute to understanding their performance and to further design of nanomedicine.
Collapse
Affiliation(s)
- Yiming Zhao
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands; Translational and Molecular Imaging Institute, Ichan School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Liposomes are a class of well-established drug carriers that have found numerous therapeutic applications. The success of liposomes, together with recent advancements in nanotechnology, has motivated the development of various novel liposome-like nanostructures with improved drug delivery performance. These nanostructures can be categorized into five major varieties, namely: (1) polymer-stabilized liposomes, (2) nanoparticle-stabilized liposomes, (3) core-shell lipid-polymer hybrid nanoparticles, (4) natural membrane-derived vesicles, and (5) natural membrane coated nanoparticles. They have received significant attention and have become popular drug delivery platforms. Herein, we discuss the unique strengths of these liposome-like platforms in drug delivery, with a particular emphasis on how liposome-inspired novel designs have led to improved therapeutic efficacy, and review recent progress made by each platform in advancing healthcare.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Che-Ming J. Hu
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Li K, Ding D, Prashant C, Qin W, Yang CT, Tang BZ, Liu B. Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study. Adv Healthc Mater 2013; 2:1600-5. [PMID: 23836611 DOI: 10.1002/adhm.201300135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Indexed: 01/15/2023]
Abstract
Understanding the localization and engraftment of tumor cells at postintravasation stage of metastasis is of high importance in cancer diagnosis and treatment. Advanced fluorescent probes and facile methodologies for cell tracing play a key role in metastasis studies. In this work, we design and synthesize a dual-modality imaging dots with both optical and magnetic contrast through integration of a magnetic resonance imaging reagent, gadolinium(III), into a novel long-term cell tracing probe with aggregation-induced emission (AIE) in far-red/near-infrared region. The obtained fluorescent-magnetic AIE dots have both high fluorescence quantum yield (25%) and T1 relaxivity (7.91 mM(-1) s(-1) ) in aqueous suspension. After further conjugation with a cell membrane penetrating peptide, the dual-modality dots can be efficiently internalized into living cells. The gadolinium(III) allows accurate quantification of biodistribution of cancer cells via intraveneous injection, while the high fluorescence provides engraftment information of cells at single cellular level. The dual-modality AIE dots show obvious synergistic advantages over either single imaging modality and hold great promises in advanced biomedical studies.
Collapse
Affiliation(s)
- Kai Li
- Institute of Materials Research and Engineering, 3 Research Link, 117602, Singapore
| | | | | | | | | | | | | |
Collapse
|
15
|
Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc Natl Acad Sci U S A 2013; 110:6506-11. [PMID: 23533277 DOI: 10.1073/pnas.1303377110] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Excessive inflammation and failed resolution of the inflammatory response are underlying components of numerous conditions such as arthritis, cardiovascular disease, and cancer. Hence, therapeutics that dampen inflammation and enhance resolution are of considerable interest. In this study, we demonstrate the proresolving activity of sub-100-nm nanoparticles (NPs) containing the anti-inflammatory peptide Ac2-26, an annexin A1/lipocortin 1-mimetic peptide. These NPs were engineered using biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol collagen IV-targeted polymers. Using a self-limited zymosan-induced peritonitis model, we show that the Ac2-26 NPs (100 ng per mouse) were significantly more potent than Ac2-26 native peptide at limiting recruitment of polymononuclear neutrophils (56% vs. 30%) and at decreasing the resolution interval up to 4 h. Moreover, systemic administration of collagen IV targeted Ac2-26 NPs (in as low as 1 µg peptide per mouse) was shown to significantly block tissue damage in hind-limb ischemia-reperfusion injury by up to 30% in comparison with controls. Together, these findings demonstrate that Ac2-26 NPs are proresolving in vivo and raise the prospect of their use in chronic inflammatory diseases such as atherosclerosis.
Collapse
|