1
|
Morikawa K, Takeuchi T, Kitamori T. Local nano-electrode fabrication utilizing nanofluidic and nano-electrochemical control. Electrophoresis 2024; 45:2076-2081. [PMID: 38962855 PMCID: PMC11707316 DOI: 10.1002/elps.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Miniaturized systems have attracted much attention with the recent advances in microfluidics and nanofluidics. From the capillary electrophoresis, the development of glass-based microfluidic and nanofluidic technologies has supported advances in microfluidics and nanofluidics. Most microfluidic systems, especially nanofluidic systems, are still simple, such as systems constructed with simple straight nanochannels and bulk-scale electrodes. One of the bottlenecks to the development of more complicated and sophisticated systems is to develop the locally integrated nano-electrodes. However, there are still issues with integrating nano-electrodes into nanofluidic devices because it is difficult to fit the nano-electrode size into a nanofluidic channel at the nanometer level. In this study, we propose a new method for the fabrication of local nano-electrodes in nanofluidic devices with nanofluidic and nano-electrochemistry-based experiments. An electroplating solution was introduced to a nanochannel with control of the flow and the electroplating reaction, by which nano-electrodes were successfully fabricated. In addition, a nanofluidic device was available for nanofluidic experiments with the application of 200 kPa. This method can be applied to any electroplating material such as gold and copper. The local nano-electrode will make a significant contribution to the development of more complicated and sophisticated nanofluidic electrophoresis systems and to local electric detection methods for various nanofluidic devices.
Collapse
Affiliation(s)
- Kyojiro Morikawa
- Department of Applied ChemistrySchool of EngineeringThe University of TokyoTokyoJapan
- Present address:
Institute of Nanoengineering and Microsystems, Department of Power Mechanical EngineeringNational Tsing Hua UniversityNo. 101, Section 2, Kuang‐Fu RoadHsinchu300044Taiwan
| | - Tomoaki Takeuchi
- Department of Applied ChemistrySchool of EngineeringThe University of TokyoTokyoJapan
| | - Takehiko Kitamori
- Department of Applied ChemistrySchool of EngineeringThe University of TokyoTokyoJapan
- Institute of Nanoengineering and MicrosystemsDepartment of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
- Collaborative Research Organization for Micro and Nano Multifunctional DevicesThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Fu X, Liu Z, Wang H, Xie D, Sun Y. Small Feature-Size Transistors Based on Low-Dimensional Materials: From Structure Design to Nanofabrication Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400500. [PMID: 38884208 PMCID: PMC11434044 DOI: 10.1002/advs.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/11/2024] [Indexed: 06/18/2024]
Abstract
For several decades after Moore's Law is proposed, there is a continuous effort to reduce the feature-size of transistors. However, as the size of transistors continues to decrease, numerous challenges and obstacles including severe short channel effects (SCEs) are emerging. Recently, low-dimensional materials have provided new opportunities for constructing small feature-size transistors due to their superior electrical properties compared to silicon. Here, state-of-the-art low-dimensional materials-based transistors with small feature-sizes are reviewed. Different from other works that mainly focus on material characteristics of a specific device structure, the discussed topics are utilizing device structure design including vertical structure and nano-gate structure, and nanofabrication techniques to achieve small feature-sizes of transistors. A comprehensive summary of these small feature-size transistors is presented by illustrating their operation mechanism, relevant fabrication processes, and corresponding performance parameters. Besides, the role of small feature-size transistors based on low-dimensional materials in further reducing the small footprint is also clarified and their cutting-edge applications are highlighted. Finally, a comparison and analysis between state-of-art transistors is made, as well as a glimpse into the future research trajectory of low dimensional materials-based small feature-size transistors is briefly outlined.
Collapse
Affiliation(s)
- Xiaqing Fu
- School of MicroelectronicsShanghai UniversityShanghai201800P. R. China
| | - Zhifang Liu
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| | - Huaipeng Wang
- School of Integrated CircuitsBeijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Dan Xie
- School of Integrated CircuitsBeijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yilin Sun
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
3
|
Tian Z, Yao G, Ren Z, Yu D, Tian J, Li M, Peng P, Ren L, Liu F, Fu Y. Metal Nanogap Memory: Performances and Switching Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26360-26373. [PMID: 38741057 DOI: 10.1021/acsami.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The nanogap memory (NGM) device, emerging as a promising nonvolatile memory candidate, has attracted increasing attention for its simple structure, nano/atomic scale size, elevated operating speed, and robustness to high temperatures. In this study, nanogap memories based on Pd, Au, and Pt were fabricated by combining nanofabrication with electromigration technology. Subsequent evaluations of the electrical characteristics were conducted under ambient air or vacuum conditions at room temperature. The investigation unveiled persistent challenges associated with metal NGM devices, including (1) prolonged SET operation time in comparison to RESET, (2) the potential generation of error bits when enhancing switching speeds, and (3) susceptibility to degradation during program/erase cycles. While these issues have been encountered by predecessors in NGM device development, the underlying causes have remained elusive. Employing molecular dynamics (MD) simulation, we have, for the first time, unveiled the dynamic processes of NGM devices during both SET and RESET operations. The MD simulation highlights that the adjustment of the tunneling gap spacing in nanogap memory primarily occurs through atomic migration or field evaporation. This dynamic process enables the device to transition between the high-resistance state (HRS) and the low-resistance state (LRS). The identified mechanism provides insight into the origins of the aforementioned challenges. Furthermore, the study proposes an effective method to enhance the endurance of NGM devices based on the elucidated mechanism.
Collapse
Affiliation(s)
- Zhongzheng Tian
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Guanwen Yao
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Zhongyang Ren
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Dacheng Yu
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Jiaojiao Tian
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Muchan Li
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Pei Peng
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Liming Ren
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Fei Liu
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Yunyi Fu
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
4
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
5
|
Mo F, Spano CE, Ardesi Y, Ruo Roch M, Piccinini G, Graziano M. Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031687. [PMID: 36772727 PMCID: PMC9919708 DOI: 10.3390/s23031687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
Food contamination by aflatoxins is an urgent global issue due to its high level of toxicity and the difficulties in limiting the diffusion. Unfortunately, current detection techniques, which mainly use biosensing, prevent the pervasive monitoring of aflatoxins throughout the agri-food chain. In this work, we investigate, through ab initio atomistic calculations, a pyrrole-based Molecular Field Effect Transistor (MolFET) as a single-molecule sensor for the amperometric detection of aflatoxins. In particular, we theoretically explain the gate-tuned current modulation from a chemical-physical perspective, and we support our insights through simulations. In addition, this work demonstrates that, for the case under consideration, the use of a suitable gate voltage permits a considerable enhancement in the sensor performance. The gating effect raises the current modulation due to aflatoxin from 100% to more than 103÷104%. In particular, the current is diminished by two orders of magnitude from the μA range to the nA range due to the presence of aflatoxin B1. Our work motivates future research efforts in miniaturized FET electrical detection for future pervasive electrical measurement of aflatoxins.
Collapse
Affiliation(s)
- Fabrizio Mo
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Chiara Elfi Spano
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Yuri Ardesi
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Gianluca Piccinini
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Mariagrazia Graziano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
6
|
Luo S, Hoff BH, Maier SA, de Mello JC. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102756. [PMID: 34719889 PMCID: PMC8693066 DOI: 10.1002/advs.202102756] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Metallic nanogaps with metal-metal separations of less than 10 nm have many applications in nanoscale photonics and electronics. However, their fabrication remains a considerable challenge, especially for applications that require patterning of nanoscale features over macroscopic length-scales. Here, some of the most promising techniques for nanogap fabrication are evaluated, covering established technologies such as photolithography, electron-beam lithography (EBL), and focused ion beam (FIB) milling, plus a number of newer methods that use novel electrochemical and mechanical means to effect the patterning. The physical principles behind each method are reviewed and their strengths and limitations for nanogap patterning in terms of resolution, fidelity, speed, ease of implementation, versatility, and scalability to large substrate sizes are discussed.
Collapse
Affiliation(s)
- Sihai Luo
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Bård H. Hoff
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Stefan A. Maier
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
- Blackett LaboratoryDepartment of PhysicsImperial College LondonLondonSW7 2AZUK
| | - John C. de Mello
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| |
Collapse
|
7
|
Li J, Hu Y, Yu L, Li L, Ji D, Li L, Hu W, Fuchs H. Recent Advances of Nanospheres Lithography in Organic Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100724. [PMID: 34018680 DOI: 10.1002/smll.202100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Nanospheres lithography (NSL) is an economical technique, which makes use of highly monodispersed nanospheres such as deposition or etch masks for generating patterns with nanoscale features. Embedding nanostructures into organic electronic devices can endow them with unique capabilities and enhanced performance, which have greatly advanced the development of organic electronics. In this review, a brief summary of the methods for the preparation of monodispersed nanospheres is presented. Afterward, the authors highlight the recent advances of a wide variety of applications of nanospheres lithography in organic electronic devices. Finally, the challenges in this field are pointed out, and the future development of this field is discussed.
Collapse
Affiliation(s)
- Jie Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yongxu Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Li Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NWPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
8
|
Wang L, Wang Y, Dai M, Zhao Q, Wang X. Biologically-Inspired Water-Swelling-Driven Fabrication of Centimeter-Level Metallic Nanogaps. MICROMACHINES 2021; 12:mi12070735. [PMID: 34201444 PMCID: PMC8305456 DOI: 10.3390/mi12070735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Metallic nanogaps have great values in plasmonics devices. However, large-area and low-cost fabrication of such nanogaps is still a huge obstacle, hindering their practical use. In this work, inspired by the cracking behavior of the tomato skin, a water-swelling-driven fabrication method is developed. An Au thinfilm is deposited on a super absorbent polymer (SAP) layer. Once the SAP layer absorbs water and swells, gaps will be created on the surface of the Au thinfilm at a centimeter-scale. Further experimentation indicates that such Au gaps can enhance the Raman scattering signal. In principle, the water-swelling-driven fabrication route can also create gaps on other metallic film and even nonmetallic film in a low-cost way.
Collapse
|
9
|
Adam T, Dhahi TS, Gopinath SCB, Hashim U, Uda MNA. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review. Biotechnol Appl Biochem 2021; 69:1395-1417. [PMID: 34143905 DOI: 10.1002/bab.2212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanogap biosensors have fascinated researchers due to their excellent electrical properties. Nanogap biosensors comprise three arrays of electrodes that form nanometer-size gaps. The sensing gaps have become the major building blocks of several sensing applications, including bio- and chemosensors. One of the advantages of nanogap biosensors is that they can be fabricated in nanoscale size for various downstream applications. Several studies have been conducted on nanogap biosensors, and nanogap biosensors exhibit potential material properties. The possibilities of combining these unique properties with a nanoscale-gapped device and electrical detection systems allow excellent and potential prospects in biomolecular detection. However, their fabrication is challenging as the gap is becoming smaller. It includes high-cost, low-yield, and surface phenomena to move a step closer to the routine fabrications. This review summarizes different feasible techniques in the fabrication of nanogap electrodes, such as preparation by self-assembly with both conventional and nonconventional approaches. This review also presents a comprehensive analysis of the fabrication, potential applications, history, and the current status of nanogap biosensors with a special focus on nanogap-mediated bio- and chemical sonsors.
Collapse
Affiliation(s)
- Tijjani Adam
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Kampus Uniciti Alam Sg. Chuchuh, Padang Besar (U), Perlis, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Th S Dhahi
- Physics Department, University of Basrah, Basra, Iraq.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - U Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N A Uda
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
10
|
Lenz J, Seiler AM, Geisenhof FR, Winterer F, Watanabe K, Taniguchi T, Weitz RT. High-Performance Vertical Organic Transistors of Sub-5 nm Channel Length. NANO LETTERS 2021; 21:4430-4436. [PMID: 33956451 DOI: 10.1021/acs.nanolett.1c01144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Miniaturization of electronic circuits increases their overall performance. So far, electronics based on organic semiconductors has not played an important role in the miniaturization race. Here, we show the fabrication of liquid electrolyte gated vertical organic field effect transistors with channel lengths down to 2.4 nm. These ultrashort channel lengths are enabled by using insulating hexagonal boron nitride with atomically precise thickness and flatness as a spacer separating the vertically aligned source and drain electrodes. The transistors reveal promising electrical characteristics with output current densities of up to 2.95 MA cm-2 at -0.4 V bias, on-off ratios of up to 106, a steep subthreshold swing of down to 65 mV dec-1 and a transconductance of up to 714 S m-1. Realizing channel lengths in the sub-5 nm regime and operation voltages down to 100 μV proves the potential of organic semiconductors for future highly integrated or low power electronics.
Collapse
Affiliation(s)
- Jakob Lenz
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
| | - Anna Monika Seiler
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen 37077, Germany
| | - Fabian Rudolf Geisenhof
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
| | - Felix Winterer
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Ralf Thomas Weitz
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen 37077, Germany
| |
Collapse
|
11
|
Luo S, Mancini A, Berté R, Hoff BH, Maier SA, de Mello JC. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100491. [PMID: 33939199 PMCID: PMC11468177 DOI: 10.1002/adma.202100491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Metallic nanogaps (MNGs) are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible, high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. A patterning technique based on molecular self-assembly and physical peeling is reported here that allows the gap-width to be tuned from more than 30 nm to less than 3 nm. The ability of the technique to define sub-3-nm gaps between dissimilar metals permits the easy fabrication of molecular rectifiers, in which conductive molecules bridge metals with differing work functions. A method is further described for fabricating massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps, in which nanometric size control is maintained over large patterning areas of up to a square centimeter. The arrays exhibit strong plasmonic resonances under visible light illumination and act as high-performance substrates for surface-enhanced Raman spectroscopy, with high enhancement factors of up to 3 × 108 relative to thin gold films. The methods described here extend the range of metallic nanostructures that can be fabricated over large areas, and are likely to find many applications in molecular electronics, plasmonics, and biosensing.
Collapse
Affiliation(s)
- Sihai Luo
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| | - Andrea Mancini
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
| | - Rodrigo Berté
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
| | - Bård H. Hoff
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| | - Stefan A. Maier
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
- Blackett Laboratory, Department of PhysicsImperial College LondonLondonSW7 2AZUK
| | - John C. de Mello
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| |
Collapse
|
12
|
Hao G, Cheng R, Dowben PA. The emergence of the local moment molecular spin transistor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:234002. [PMID: 32045894 DOI: 10.1088/1361-648x/ab74e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Local moment molecular systems have now been used as the conduction channel in gated spintronics devices, and some of these three terminal devices might even be considered molecular spin transistors. In these systems, the gate voltage can be used to tune the molecular level alignment, while applied magnetic fields have an influence on the spin state, altering the magnetic properties, and providing insights to the magnetic anisotropy. More recently, the use of molecular spin crossover complexes, as the conduction channel, has led to devices that are both nonvolatile and have functionality at higher temperatures. Indeed, some devices have now been demonstrated to work at room temperature. Here, several molecular transistors, including those claiming to use single molecule magnets (SMM), are reviewed.
Collapse
Affiliation(s)
- Guanhua Hao
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, 68588-0299, United States of America
| | | | | |
Collapse
|
13
|
Zharinov VS, Picot T, Scheerder JE, Janssens E, Van de Vondel J. Room temperature single electron transistor based on a size-selected aluminium cluster. NANOSCALE 2020; 12:1164-1170. [PMID: 31850438 DOI: 10.1039/c9nr09467a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single electron transistors (SETs) are powerful devices to study the properties of nanoscale objects. However, the capabilities of placing a nano-object between electrical contacts under pristine conditions are lacking. Here, we developed a versatile two point contacting approach that tackles this challenge, which is demonstrated by constructing in situ a prototypical SET device consisting of a single aluminium cluster of 66 ± 5 atoms, deposited directly in a gold nanogap using an innovative cluster beam deposition technique. The gate driven conductance measurements demonstrate Coulomb blockade oscillations at room temperature correlating with an extracted charging energy of 0.14 eV, which is five times larger than kBT at 300 K. Our work provides a model SET device platform to probe the quantum features of nano-objects with high precision.
Collapse
Affiliation(s)
- Vyacheslav S Zharinov
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, Box 2414, BE-3001 Leuven, Belgium.
| | - Thomas Picot
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, Box 2414, BE-3001 Leuven, Belgium.
| | - Jeroen E Scheerder
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, Box 2414, BE-3001 Leuven, Belgium.
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, Box 2414, BE-3001 Leuven, Belgium.
| | - Joris Van de Vondel
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, Box 2414, BE-3001 Leuven, Belgium.
| |
Collapse
|
14
|
Vishnubhotla SB, Chen R, Khanal SR, Li J, Stach EA, Martini A, Jacobs TDB. Quantitative measurement of contact area and electron transport across platinum nanocontacts for scanning probe microscopy and electrical nanodevices. NANOTECHNOLOGY 2019; 30:045705. [PMID: 30479311 DOI: 10.1088/1361-6528/aaebd6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conductive modes of atomic force microscopy are widely used to characterize the electronic properties of materials, and in such measurements, contact size is typically determined from current flow. Conversely, in nanodevice applications, the current flow is predicted from the estimated contact size. In both cases, it is very common to relate the contact size and current flow using well-established ballistic electron transport theory. Here we performed 19 electromechanical tests of platinum nanocontacts with in situ transmission electron microscopy to measure contact size and conductance. We also used molecular dynamics simulations of matched nanocontacts to investigate the nature of contact on the atomic scale. Together, these tests show that the ballistic transport equations under-predict the contact size by more than an order of magnitude. The measurements suggest that the low conductance of the contact cannot be explained by the scattering of electrons at defects nor by patchy contact due to surface roughness; instead, the lower-than-expected contact conductance is attributed to approximately a monolayer of insulating surface species on the platinum. Surprisingly, the low conductance persists throughout loading and even after significant sliding of the contact in vacuum. We apply tunneling theory and extract best-fit barrier parameters that describe the properties of this surface layer. The implications of this investigation are that electron transport in device-relevant platinum nanocontacts can be significantly limited by the presence and persistence of surface species, resulting in current flow that is better described by tunneling theory than ballistic electron transport, even for cleaned pure-platinum surfaces and even after loading and sliding in vacuum.
Collapse
Affiliation(s)
- Sai Bharadwaj Vishnubhotla
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rimei Chen
- Department of Mechanical Engineering, University of California-Merced, Merced, CA, United States of America
| | - Subarna R Khanal
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, United States of America
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, United States of America
| | - Eric A Stach
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, United States of America
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California-Merced, Merced, CA, United States of America
| | - Tevis D B Jacobs
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
15
|
Yang Y, Gu C, Li J. Sub-5 nm Metal Nanogaps: Physical Properties, Fabrication Methods, and Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804177. [PMID: 30589217 DOI: 10.1002/smll.201804177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Indexed: 05/26/2023]
Abstract
Sub-5 nm metal nanogaps have attracted widespread attention in physics, chemistry, material sciences, and biology due to their physical properties, including great plasmon-enhanced effects in light-matter interactions and charge tunneling, Coulomb blockade, and the Kondo effect under an electrical stimulus. These properties especially meet the needs of many cutting-edge devices, such as sensing, optical, molecular, and electronic devices. However, fabricating sub-5 nm nanogaps is still challenging at the present, and scaled and reliable fabrication, improved addressability, and multifunction integration are desired for further applications in commercial devices. The aim of this work is to provide a comprehensive overview of sub-5 nm nanogaps and to present recent advancements in metal nanogaps, including their physical properties, fabrication methods, and device applications, with the ultimate aim to further inspire scientists and engineers in their research.
Collapse
Affiliation(s)
- Yang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
16
|
Vishnubhotla SB, Chen R, Khanal SR, Martini A, Jacobs TDB. Understanding contact between platinum nanocontacts at low loads: The effect of reversible plasticity. NANOTECHNOLOGY 2019; 30:035704. [PMID: 30444727 DOI: 10.1088/1361-6528/aaea2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal nanocontacts play a critical role in atomic force microscopy, functional nanostructures, metallic nanoparticles, and nanoscale electromechanical devices. In all cases, knowledge of the area of contact, and its variation with load, is critical for the quantitative prediction of behavior. Often, the contact area is predicted using continuum mechanics models which relate contact size to geometry, material properties, and load. Here we show for platinum nanoprobes that the contact size deviates significantly from these continuum predictions, even at low applied loads and in the absence of irreversible shape change. We use in situ transmission electron microscopy (TEM) with matched molecular dynamics (MD) simulations to investigate the load-dependent size of the contact. Direct measurements of contact radius from MD and TEM exceed the predictions of continuum mechanics by 24%-164%, depending on the model applied. The physical mechanism for this deviation is found to be dislocation activity in the near-surface material, which is fully reversed upon unloading. These findings demonstrate that contact mechanics models are insufficient for predicting contact area in real-world platinum nanostructures, even at ultra-low applied loads.
Collapse
Affiliation(s)
- Sai Bharadwaj Vishnubhotla
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | | | | | | | | |
Collapse
|
17
|
Dubois V, Raja SN, Gehring P, Caneva S, van der Zant HSJ, Niklaus F, Stemme G. Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. Nat Commun 2018; 9:3433. [PMID: 30143636 PMCID: PMC6109151 DOI: 10.1038/s41467-018-05785-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022] Open
Abstract
Break junctions provide tip-shaped contact electrodes that are fundamental components of nano and molecular electronics. However, the fabrication of break junctions remains notoriously time-consuming and difficult to parallelize. Here we demonstrate true parallel fabrication of gold break junctions featuring sub-3 nm gaps on the wafer-scale, by relying on a novel self-breaking mechanism based on controlled crack formation in notched bridge structures. We achieve fabrication densities as high as 7 million junctions per cm2, with fabrication yields of around 7% for obtaining crack-defined break junctions with sub-3 nm gaps of fixed gap width that exhibit electron tunneling. We also form molecular junctions using dithiol-terminated oligo(phenylene ethynylene) (OPE3) to demonstrate the feasibility of our approach for electrical probing of molecules down to liquid helium temperatures. Our technology opens a whole new range of experimental opportunities for nano and molecular electronics applications, by enabling very large-scale fabrication of solid-state break junctions.
Collapse
Affiliation(s)
- Valentin Dubois
- Department of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Shyamprasad N Raja
- Department of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Pascal Gehring
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Sabina Caneva
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Frank Niklaus
- Department of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden.
| | - Göran Stemme
- Department of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden.
| |
Collapse
|
18
|
|
19
|
Abstract
Conjugated polymers have attracted the world's attentions since their discovery due to their great promise for optoelectronic devices. However, the fundamental understanding of charge transport in conjugated polymers remains far from clear. The origin of this challenge is the natural disorder of polymers with complex molecular structures in the solid state. Moreover, an effective way to examine the intrinsic properties of conjugated polymers is absent. Optoelectronic devices are always based on spin-coated films. In films, polymers tend to form highly disordered structures at nanometer to micrometer length scales due to the high degree of conformational freedom of macromolecular chains and the irregular interchain entanglement, thus typically resulting in much lower charge transport properties than their intrinsic performance. Furthermore, a subtle change of processing conditions may dramatically affect the film formation-inducing large variations in the morphology, crystallinity, microstructure, molecular packing, and alignment, and finally varying the effective charge transport significantly and leading to great inconsistency over an order of magnitude even for devices based on the same polymer semiconductor. Meanwhile, the charge transport mechanism in conjugated polymers is still unclear and its investigation is challenging based on such complex microstructures of polymers in films. Therefore, how to objectively evaluate the charge transport and probe the charge transport mechanism of conjugated polymers has confronted the world for decades. In this Account, we present our recent progress on multilevel charge transport in conjugated polymers, from disordered films, uniaxially aligned thin films, and single crystalline micro- or nanowires to molecular scale, where a derivative of poly(para-phenylene ethynylene) with thioacetyl end groups (TA-PPE) is selected as the candidate for investigation, which could also be extended to other conjugated polymer systems. Our systematic investigations demonstrated that 3-4 orders higher charge transport properties could be achieved with the improvement of polymer chain order and confirmed efficient charge transport along the conjugated polymer backbones. Moreover, with downscaling to molecular scale, many novel phenomena were observed such as the largely quantized electronic structure for an 18 nm-long TA-PPE and the modulation of the redox center of tetrathiafulvalene (TTF) units on tunneling charge transport, which opens the door for conjugated polymers used in nanometer quantum devices. We hope the understanding of charge transport in PPE and its related conjugated polymer at multilevel scale in this Account will provide a new method to sketch the charge transport properties of conjugated polymers, and new insights into the combination of more conjugated polymer materials in the multilevel optoelectronic and other related functional devices, which will offer great promise for the next generation of electronic devices.
Collapse
Affiliation(s)
- Huanli Dong
- Key
Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenping Hu
- Key
Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
20
|
Cui A, Liu Z, Dong H, Yang F, Zhen Y, Li W, Li J, Gu C, Zhang X, Li R, Hu W. Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8227-8233. [PMID: 27435803 DOI: 10.1002/adma.201603124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Nanogap electrodes arrays are fabricated by combining atomic layer deposition, adhesive tape, and chemical etching. A unipolar nonvolatile resistive-switching behavior is identified in the nanogap electrodes, showing stable, robust performance and the multibit storage ability, demonstrating great potential in ultrahigh-density storage. The formation and dissolution of Si conductive filaments and migration of Au atoms is the mechanism behind the resistive switching.
Collapse
Affiliation(s)
- Ajuan Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhe Liu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Fangxu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yonggang Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wuxia Li
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
21
|
Otsuka K, Inoue T, Shimomura Y, Chiashi S, Maruyama S. Field emission and anode etching during formation of length-controlled nanogaps in electrical breakdown of horizontally aligned single-walled carbon nanotubes. NANOSCALE 2016; 8:16363-16370. [PMID: 27714089 DOI: 10.1039/c6nr05449h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We observe field emission between nanogaps and voltage-driven gap extension of single-walled carbon nanotubes (SWNTs) on substrates during the electrical breakdown process. Experimental results show that the gap size is dependent on the applied voltage and humidity, which indicates high controllability of the gap size by appropriate adjustment of these parameters in accordance with the application. We propose a mechanism for the gap formation during electrical breakdown as follows. After small gaps are formed by Joule heating-induced oxidation, SWNTs on the anode side are electrochemically etched due to physically-adsorbed water from the air and the enhanced electric field at the SWNT tips. Field emission is measured in a vacuum as a possible mechanism for charge transfer at SWNT gaps. The relationship between the field enhancement factor and geometric features of SWNTs explains both the voltage dependence of the extended gap size and the field emission properties of the SWNT gaps. In addition, the similar field-induced etching can cause damage to adjacent SWNTs, which possibly deteriorates the selectivity for cutting metallic pathways in the presence of water vapor.
Collapse
Affiliation(s)
- Keigo Otsuka
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Yuki Shimomura
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Shohei Chiashi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan. and Energy NanoEngineering Lab., National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8564, Japan
| |
Collapse
|
22
|
Cai H, Wu Y, Dai Y, Pan N, Tian Y, Luo Y, Wang X. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates. OPTICS EXPRESS 2016; 24:20808-20815. [PMID: 27607684 DOI: 10.1364/oe.24.020808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metallic nanogap is very important for a verity of applications in plasmonics. Although several fabrication techniques have been proposed in the last decades, it is still a challenge to produce uniform nanogaps with a few nanometers gap distance and high throughput. Here we present a simple, yet robust method based on the atomic layer deposition (ALD) and lift-off technique for patterning ultranarrow nanogaps array. The ability to accurately control the thickness of the ALD spacer layer enables us to precisely define the gap size, down to sub-5 nm scale. Moreover, this new method allows to fabricate uniform nanogaps array along different directions densely arranged on the wafer-scale substrate. It is demonstrated that the fabricated array can be used as an excellent substrate for surface enhanced Raman scatting (SERS) measurements of molecules, even on flexible substrates. This uniform nanogaps array would also find its applications for the trace detection and biosensors.
Collapse
|
23
|
Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes. Nat Commun 2016; 7:11749. [PMID: 27272394 PMCID: PMC4899853 DOI: 10.1038/ncomms11749] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/26/2016] [Indexed: 11/29/2022] Open
Abstract
Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (∼1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width. Flow of electricity between two electrodes can be tuned by monolayers of organic compounds. Here, Pourhossein et al. show that the tunnelling current of such molecular junctions can be modulated rapidly by illumination, using nanoskived gold wires separated by a self-assembled monolayer of hemicyanine dyes.
Collapse
|
24
|
Liu L, Ren Z, Xiao C, He B, Dong H, Yan S, Hu W, Wang Z. Epitaxially-crystallized oriented naphthalene bis(dicarboximide) morphology for significant performance improvement of electron-transporting thin-film transistors. Chem Commun (Camb) 2016; 52:4902-5. [DOI: 10.1039/c6cc01148a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large-area and well-ordered F-NDI films have been prepared for high performance OFETs by epitaxial crystallization on highly oriented PE substrates.
Collapse
Affiliation(s)
- Lili Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Chengyi Xiao
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Bing He
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhaohui Wang
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|