1
|
Kou B, Wang Z, Mousavi S, Wang P, Ke Y. Dynamic Gold Nanostructures Based on DNA Self Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308862. [PMID: 38143287 DOI: 10.1002/smll.202308862] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/10/2023] [Indexed: 12/26/2023]
Abstract
The combination of DNA nanotechnology and Nano Gold (NG) plasmon has opened exciting possibilities for a new generation of functional plasmonic systems that exhibit tailored optical properties and find utility in various applications. In this review, the booming development of dynamic gold nanostructures are summarized, which are formed by DNA self-assembly using DNA-modified NG, DNA frameworks, and various driving forces. The utilization of bottom-up strategies enables precise control over the assembly of reversible and dynamic aggregations, nano-switcher structures, and robotic nanomachines capable of undergoing on-demand, reversible structural changes that profoundly impact their properties. Benefiting from the vast design possibilities, complete addressability, and sub-10 nm resolution, DNA duplexes, tiles, single-stranded tiles and origami structures serve as excellent platforms for constructing diverse 3D reconfigurable plasmonic nanostructures with tailored optical properties. Leveraging the responsive nature of DNA interactions, the fabrication of dynamic assemblies of NG becomes readily achievable, and environmental stimulation can be harnessed as a driving force for the nanomotors. It is envisioned that intelligent DNA-assembled NG nanodevices will assume increasingly important roles in the realms of biological, biomedical, and nanomechanical studies, opening a new avenue toward exploration and innovation.
Collapse
Affiliation(s)
- Bo Kou
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Zhichao Wang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Shikufa Mousavi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
2
|
Cecconello A, Cencini A, Rilievo G, Tonolo F, Litti L, Vianello F, Willner I, Magro M. Chiroplasmonic DNA Scaffolded "Fusilli" Structures. NANO LETTERS 2024; 24:5944-5951. [PMID: 38588536 DOI: 10.1021/acs.nanolett.3c04943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
DNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl2. Atomic force microscopy (AFM) characterization showed several micrometer long tubular structures that were used as templates for the positioning of plasmonic nanoparticles (NPs) along a three-dimensional helical path using DNA tethers. As imaged by high-resolution scanning transmission electron microscopy (HR-STEM) and modeled by theoretical calculations, the NPs distributed into a "fusilli" fashion (i.e., a helical pasta shape), displaying chiroptical activity as revealed by a bisignated CD absorption, centered at the plasmon resonance wavelength. The present structures contribute to enrich the ever-developing arena of chiroplasmonic DNA-based nanomaterials and demonstrate that large assemblies are attainable for their future application to develop metamaterials.
Collapse
Affiliation(s)
- Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, via marzolo 1, 35131 Padova, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
3
|
Cencini A, Magro M. Special Issue "Bio-Nano Interactions 2.0". Int J Mol Sci 2024; 25:1667. [PMID: 38338952 PMCID: PMC10855373 DOI: 10.3390/ijms25031667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In 1961, USA's blues legend Howlin' Wolf released the single entitled "Down in the Bottom" (Figure 1) [...].
Collapse
Affiliation(s)
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy;
| |
Collapse
|
4
|
Tang T, Shen K, Li J, Liang X, Tang Y, Li C, He Y. Optimal weak measurement scheme for chiral molecular detection based on photonic spin Hall effect. OPTICS EXPRESS 2023; 31:40308-40316. [PMID: 38041335 DOI: 10.1364/oe.500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 12/03/2023]
Abstract
In this paper, we propose a precision method to measure the chiroptical signal of Artemisinin solutions using the photonic spin Hall effect (PSHE) on the Ce:YIG-YIG-SiO2 structure as a probe. The effects of transmission distance, incident angles, applied magnetic fields of different directions, and beam waist of light on the weak measurement system are analytically investigated through simulations. It is found that decreasing the beam waist of the incident spot, increasing the incident angle, increasing the transmission distance, and adding a longitudinal magnetic field is conducive to enhancing the amplification transverse shift of PSHE, thus the measurement sensitivity is greatly improved. Based on the optimal weak measurement scheme, the detection limit for concentration measurement of artemisinin based on optical rotatory (OR) was reduced to 0.05 mg/ml. The measurement precision of the OR angle has been improved to 10-7rad.
Collapse
|
5
|
Sun M, Wang X, Guo X, Xu L, Kuang H, Xu C. Chirality at nanoscale for bioscience. Chem Sci 2022; 13:3069-3081. [PMID: 35414873 PMCID: PMC8926252 DOI: 10.1039/d1sc06378b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
In the rapidly expanding fields of nanoscience and nanotechnology, there is considerable interest in chiral nanomaterials, which are endowed with unusually strong circular dichroism. In this review, we summarize the principles of organization underlying chiral nanomaterials and generalize the recent advances in the main strategies used to fabricate these nanoparticles for bioscience applications. The creation of chirality from nanoscale building blocks has been investigated both experimentally and theoretically, and the tunability of chirality using external fields, such as light and magnetic fields, has allowed the optical activity of these materials to be controlled and their properties understood. Therefore, the specific recognition and potential applications of chiral materials in bioscience are discussed. The effects of the chirality of nanostructures on biological systems have been exploited to sense and cut molecules, for therapeutic applications, and so on. In the final part of this review, we examine the future perspectives for chiral nanomaterials in bioscience and the challenges posed by them.
Collapse
Affiliation(s)
- Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiuxiu Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
6
|
Gothe PK, Martinez A, Koh SJ. Effect of Ionic Strength, Nanoparticle Surface Charge Density, and Template Diameter on Self-Limiting Single-Particle Placement: A Numerical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11961-11977. [PMID: 34610743 DOI: 10.1021/acs.langmuir.1c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the bottom-up approach where functional materials are constructed out of nanoscale building blocks (e.g., nanoparticles), it is essential to have methods that are capable of placing the individual nanoscale building blocks onto exact substrate positions on a large scale and on a large area. One of the promising placement methods is the self-limiting single-particle placement (SPP), in which a single nanoparticle in a colloidal solution is electrostatically guided by electrostatic templates and exactly one single nanoparticle is placed on each target position in a self-limiting way. This paper presents a numerical study on SPP, where the effects of three key parameters, (1) ionic strength (IS), (2) nanoparticle surface charge density (σNP), and (3) circular template diameter (d), on SPP are investigated. For 40 different parameter sets of (IS, σNP, d), a 30 nm nanoparticle positioned at R⃗ above the substrate was modeled in two configurations (i) without and (ii) with the presence of a 30 nm nanoparticle at the center of a circular template. For each parameter set and each configuration, the electrostatic potentials were calculated by numerically solving the Poisson-Boltzmann equation, from which interaction forces and interaction free energies were subsequently calculated. These have identified realms of parameter sets that enable a successful SPP. A few exemplary parameter sets include (IS, σNP, d) = (0.5 mM, -1.5 μC/cm2, 100 nm), (0.05 mM, -0.5 μC/cm2, 100 nm), (0.5 mM, -1.5 μC/cm2, 150 nm), and (0.05 mM, -0.8 μC/cm2, 150 nm). This study provides clear guidance toward experimental realizations of large-scale and large-area SPPs, which could lead to bottom-up fabrications of novel electronic, photonic, plasmonic, and spintronic devices and sensors.
Collapse
Affiliation(s)
- Pushkar K Gothe
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anthony Martinez
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Seong Jin Koh
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
7
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
8
|
Wang L, Partridge BE, Huang N, Olsen JT, Sahoo D, Zeng X, Ungar G, Graf R, Spiess HW, Percec V. Extraordinary Acceleration of Cogwheel Helical Self-Organization of Dendronized Perylene Bisimides by the Dendron Sequence Encoding Their Tertiary Structure. J Am Chem Soc 2020; 142:9525-9536. [DOI: 10.1021/jacs.0c03353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Benjamin E. Partridge
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ning Huang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - James T. Olsen
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Goran Ungar
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Robert Graf
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Hans W. Spiess
- Max-Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Nguyen MK, Kuzyk A. Reconfigurable Chiral Plasmonics beyond Single Chiral Centers. ACS NANO 2019; 13:13615-13619. [PMID: 31808671 DOI: 10.1021/acsnano.9b09179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding how the geometrical property of chirality is transferred into the physical properties of chiral materials is becoming increasingly important in various research fields, including plasmonics. Advances in DNA nanotechnology, especially DNA origami techniques, have enabled routine fabrication of complex chiral plasmonic assemblies. However, most of the work undertaken to date has involved plasmonic enantiomers. The concept of multiple chiral centers in stereochemistry provides simple guidelines for generating multiple chiral configurations beyond enantiomers. In this issue of ACS Nano, Wang et al. report DNA origami-based assembly and characterization of reconfigurable plasmonic chiral stereoisomers with up to three chiral centers. In this Perspective, we explore the implication of these results for further development of functional chiral plasmonic systems.
Collapse
Affiliation(s)
- Minh-Kha Nguyen
- Department of Neuroscience and Biomedical Engineering , Aalto University School of Science , P.O. Box 12200, FI-00076 Aalto , Finland
- Faculty of Chemical Engineering , HCMC University of Technology , VNU-HCM, Ho Chi Minh City , Vietnam
| | - Anton Kuzyk
- Department of Neuroscience and Biomedical Engineering , Aalto University School of Science , P.O. Box 12200, FI-00076 Aalto , Finland
| |
Collapse
|
10
|
Partridge BE, Wang L, Sahoo D, Olsen JT, Leowanawat P, Roche C, Ferreira H, Reilly KJ, Zeng X, Ungar G, Heiney PA, Graf R, Spiess HW, Percec V. Sequence-Defined Dendrons Dictate Supramolecular Cogwheel Assembly of Dendronized Perylene Bisimides. J Am Chem Soc 2019; 141:15761-15766. [PMID: 31529966 DOI: 10.1021/jacs.9b08714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A dendronized perylene bisimide (PBI) that self-organizes into hexagonal arrays of supramolecular double helices with identical single-crystal-like order that disregards chirality was recently reported. A cogwheel model of self-assembly that explains this process was proposed. Accessing the highly ordered cogwheel phase required very slow heating and cooling or extended periods of annealing. Analogous PBIs with linear alkyl chains did not exhibit the cogwheel assembly. Here a library of sequence-defined dendrons containing all possible compositions of linear and racemic alkyl chains was employed to construct self-assembling PBIs. Thermal and structural analysis of their assemblies by differential scanning calorimetry (DSC) and fiber X-ray diffraction (XRD) revealed that the incorporation of n-alkyl chains accelerates the formation of the high order cogwheel phase, rendering the previously invisible phase accessible under standard heating and cooling rates. Small changes to the primary structure, as constitutional isomerism, result in significant changes to macroscopic properties such as melting of the periodic array. This study demonstrated how changes to the sequence-defined primary structure, including the relocation of methyl groups between two constitutional isomers, dictate tertiary and quaternary structure in hierarchical assemblies. This led to the discovery of a sequence that self-organizes the cogwheel assembly much faster than even the corresponding homochiral compounds and demonstrated that defined-sequence, which has long been recognized as a determinant for the complex structure of biomacromolecules including proteins and nucleic acids, plays the same role also in supramolecular synthetic systems.
Collapse
Affiliation(s)
- Benjamin E Partridge
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Li Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.,College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - James T Olsen
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Pawaret Leowanawat
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Cecilé Roche
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Henrique Ferreira
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Kevin J Reilly
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Xiangbing Zeng
- Department of Materials Science and Engineering , University of Sheffield , Sheffield S1 3JD , United Kingdom
| | - Goran Ungar
- Department of Materials Science and Engineering , University of Sheffield , Sheffield S1 3JD , United Kingdom.,State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Paul A Heiney
- Department of Physics and Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6396 , United States
| | - Robert Graf
- Max-Planck Institute for Polymer Research , 55128 Mainz , Germany
| | - Hans W Spiess
- Max-Planck Institute for Polymer Research , 55128 Mainz , Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|