1
|
Shao M, Li C, Meng C, Liu R, Yu P, Lu F, Zhong Z, Wei X, Zhou J, Zhong MC. Laser-induced microbubble as an in vivo valve for optofluidic manipulation in living Mice's microvessels. LAB ON A CHIP 2024; 24:3480-3489. [PMID: 38899528 DOI: 10.1039/d4lc00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Optofluidic regulation of blood microflow in vivo represents a significant method for investigating illnesses linked to abnormal changes in blood circulation. Currently, non-invasive strategies are limited to regulation within capillaries of approximately 10 μm in diameter because the adaption to blood pressure levels in the order of several hundred pascals poses a significant challenge in larger microvessels. In this study, using laser-induced microbubble formation within microvessels of the mouse auricle, we regulate blood microflow in small vessels with diameters in the tens of micrometers. By controlling the laser power, we can control the growth and stability of microbubbles in vivo. This controlled approach enables the achievement of prolonged ischemia and subsequent reperfusion of blood flow, and it can also regulate the microbubbles to function as micro-pumps for reverse blood pumping. Furthermore, by controlling the microbubble, narrow microflow channels can be formed between the microbubbles and microvessels for assessing the apparent viscosity of leukocytes, which is 76.9 ± 11.8 Pa·s in the in vivo blood environment. The proposed design of in vivo microbubble valves opens new avenues for constructing real-time blood regulation and exploring cellular mechanics within living organisms.
Collapse
Affiliation(s)
- Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Changxu Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Chun Meng
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Rui Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Panpan Yu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fengya Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Zhensheng Zhong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Xunbin Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
- Biomedical Engineering Department and Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Peking University, 100081, Beijing, China.
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Min-Cheng Zhong
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Gao Q, Yang Z, Zhu R, Wang J, Xu P, Liu J, Chen X, Yan Z, Peng Y, Wang Y, Zheng H, Cai F, Wang W. Ultrasonic Steering Wheels: Turning Micromotors by Localized Acoustic Microstreaming. ACS NANO 2023; 17:4729-4739. [PMID: 36815761 DOI: 10.1021/acsnano.2c11070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to steer micromotors in specific directions and at precise speeds is highly desired for their use in complex environments. However, a generic steering strategy that can be applied to micromotors of all types and surface coatings is yet to be developed. Here, we report that ultrasound of ∼100 kHz can spin a spherical micromotor so that it turns left or right when moving forward, or that it moves in full circles. The direction and angular speeds of their spinning and the radii of circular trajectories are precisely tunable by varying ultrasound voltages and frequencies, as well as particle properties such as its radius, materials, and coating thickness. Such spinning is hypothesized to originate from the circular microstreaming flows localized around a solid microsphere vibrating in ultrasound. In addition to causing a micromotor to spin, such streaming flows also helped release cargos from a micromotor during a capture-transport-release mission. Localized microstreaming does not depend on or interference with a specific propulsion mechanism and can steer a wide variety of micromotors. This work suggests that ultrasound can be used to steer microrobots in complex, biologically relevant environments as well as to steer microorganisms and cells.
Collapse
Affiliation(s)
- Qiang Gao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhou Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Ruitong Zhu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Jinping Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Pengzhao Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Xiaowen Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zuyao Yan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yanping Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Feiyan Cai
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| |
Collapse
|
3
|
Baumgartner K, Westerhausen C. Recent advances of surface acoustic wave-based sensors for noninvasive cell analysis. Curr Opin Biotechnol 2023; 79:102879. [PMID: 36634534 DOI: 10.1016/j.copbio.2022.102879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023]
Abstract
In the past years, the application of surface acoustic waves (SAWs) as sensors for biological applications has reached high relevance in the field of biotechnology. From rapid advances in designs and materials, new opportunities have emerged, especially for sensing of living cells. Additionally, the combination of SAW sensors with microfluidics and optical microscopy has expanded the market of possible applications. Differentiation of infected and healthy red blood cells or aggressive and nonaggressive tumor cells, and monitoring of wound healing, bacteria, or viral antigen concentrations via SAW-based sensors are only a few examples of recent achievements in cell biology. The rapid growth of this field requires frequent reviewing of the recent progress to maintain high research standards and promote future developments.
Collapse
Affiliation(s)
- Kathrin Baumgartner
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany; Hanns-Seidel-Stiftung e.V., 80636 Munich, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany; Institute of Physics, Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany
| | - Christoph Westerhausen
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany; Institute of Physics, Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany; Augsburg Center for Innovative Technologies (ACIT), 86159 Augsburg, Germany.
| |
Collapse
|
4
|
Li J, Zhang Y, Lou Z, Li M, Cui L, Yang Z, Zhang L, Zhang Y, Gu N, Yang F. Magnetic Nanobubble Mechanical Stress Induces the Piezo1-Ca 2+ -BMP2/Smad Pathway to Modulate Neural Stem Cell Fate and MRI/Ultrasound Dual Imaging Surveillance for Ischemic Stroke. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201123. [PMID: 35555970 DOI: 10.1002/smll.202201123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Neural stem cells (NSCs) are used to treat various nervous system diseases because of their self-renewal ability and multidirectional differentiation potential. However, an insufficient ability to track their migration in vivo and poor control over their survival and differentiation efficiency are two major critical challenges for clinical application. Here, it is shown that when magnetic nanobubbles (MNBs), which are assembled from magnetic nanoparticles, are internalized by NSCs, intramembrane volumetric oscillation of the MNBs induces an increase in intracellular hydrostatic pressure and cytoskeleton force, resulting in the activation of the Piezo1-Ca2+ mechanosensory channel. This subsequently triggers the BMP2/Smad biochemical signaling pathway, leading to differentiation of NSCs into the neuronal phenotype. Signaling through the Piezo1-Ca2+ -BMP2/Smad pathway can be further accelerated by application of an external shear stress force using low-intensity pulsed ultrasound. More importantly, magnetic resonance imaging and ultrasound imaging surveillance of NSCs based on MNB labeling can be leveraged to provide NSC therapeutic outcomes. Both the in vitro and in vivo findings demonstrate that a bubble nanostructure-induced physical force can modulate and control the mechanical signaling pathway regulating stem cell development.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yao Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhichao Lou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Mingxi Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Lin Cui
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zhenrong Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
5
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
6
|
Salari A, Appak-Baskoy S, Coe IR, Tsai SSH, Kolios MC. An ultrafast enzyme-free acoustic technique for detaching adhered cells in microchannels. RSC Adv 2021; 11:32824-32829. [PMID: 35493567 PMCID: PMC9042199 DOI: 10.1039/d1ra04875a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Adherent cultured cells are widely used biological tools for a variety of biochemical and biotechnology applications, including drug screening and gene expression analysis. One critical step in culturing adherent cells is the dissociation of cell monolayers into single-cell suspensions. Different enzymatic and non-enzymatic methods have been proposed for this purpose. Trypsinization, the most common enzymatic method for dislodging adhered cells, can be detrimental to cells, as it can damage cell membranes and ultimately cause cell death. Additionally, all available techniques require a prolonged treatment duration, typically on the order of minutes (5-10 min). Dissociation of cells becomes even more challenging in microfluidic devices, where, due to the nature of low Reynolds number flow and reduced mixing efficiency, multiple washing steps and prolonged trypsinization may be necessary to treat all cells. Here, we report a novel acoustofluidic method for the detachment of cells adhered onto a microchannel surface without exposing the cells to any enzymatic or non-enzymatic chemicals. This method enables a rapid (i.e., on the order of seconds), cost-effective, and easy-to-operate cell detachment strategy, yielding a detachment efficiency of ∼99% and cellular viability similar to that of the conventional trypsinization method. Also, as opposed to biochemical-based techniques (e.g., enzymatic), in our approach, cells are exposed to the dissociating agent (i.e., substrate-mediated acoustic excitation and microstreaming flow) only for as long as they remain attached to the substrate. After dissociation, the effect of acoustic excitation is reduced to microstreaming flow, therefore, minimizing unwanted effects of the dissociating agent on the cell phenotype. Additionally, our results suggest that cell excitation at acoustic powers lower than that required for complete cell detachment can potentially be employed for probing the adhesion strength of cell-substrate attachment. This novel approach can, therefore, be used for a wide range of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Alinaghi Salari
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Biomedical Engineering Graduate Program, Ryerson University Toronto ON M5B 2K3 Canada
| | - Sila Appak-Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Chemistry and Biology, Ryerson University Toronto ON M5B 2K3 Canada
| | - Imogen R Coe
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Chemistry and Biology, Ryerson University Toronto ON M5B 2K3 Canada
- Molecular Science Graduate Program, Ryerson University Toronto ON M5B2K3 Canada
| | - Scott S H Tsai
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Mechanical and Industrial Engineering, Ryerson University Toronto ON M5B 2K3 Canada
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST) Toronto ON M5B 1T8 Canada
- Department of Physics, Ryerson University Toronto ON M5B 2K3 Canada
| |
Collapse
|
7
|
Salari A, Appak-Baskoy S, Coe IR, Abousawan J, Antonescu CN, Tsai SSH, Kolios MC. Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications. LAB ON A CHIP 2021; 21:1788-1797. [PMID: 33734246 DOI: 10.1039/d0lc01303j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological research and many cell-based therapies rely on the successful delivery of cargo materials into cells. Intracellular delivery in an in vitro setting refers to a variety of physical and biochemical techniques developed for conducting rapid and efficient transport of materials across the plasma membrane. Generally, the techniques that are time-efficient (e.g., electroporation) suffer from heterogeneity and low cellular viability, and those that are precise (e.g., microinjection) suffer from low-throughput and are labor-intensive. Here, we present a novel in vitro microfluidic strategy for intracellular delivery, which is based on the acoustic excitation of adherent cells. Strong mechanical oscillations, mediated by Lamb waves, inside a microfluidic channel facilitate the cellular uptake of different size (e.g., 3-500 kDa, plasmid encoding EGFP) cargo materials through endocytic pathways. We demonstrate successful delivery of 500 kDa dextran to various adherent cell lines with unprecedented efficiency in the range of 65-85% above control. We also show that actuation voltage and treatment duration can be tuned to control the dosage of delivered substances. High viability (≥91%), versatility across different cargo materials and various adherent cell lines, scalability to hundreds of thousands of cells per treatment, portability, and ease-of-operation are among the unique features of this acoustofluidic strategy. Potential applications include targeting through endocytosis-dependant pathways in cellular disorders, such as lysosomal storage diseases, which other physical methods are unable to address. This novel acoustofluidic method achieves rapid, uniform, and scalable delivery of material into cells, and may find utility in lab-on-a-chip applications.
Collapse
Affiliation(s)
- Alinaghi Salari
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Sila Appak-Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Imogen R Coe
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Scott S H Tsai
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
8
|
Li Y, Liu X, Huang Q, Ohta AT, Arai T. Bubbles in microfluidics: an all-purpose tool for micromanipulation. LAB ON A CHIP 2021; 21:1016-1035. [PMID: 33538756 DOI: 10.1039/d0lc01173h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent decades, the integration of microfluidic devices and multiple actuation technologies at the microscale has greatly contributed to the progress of related fields. In particular, microbubbles are playing an increasingly important role in microfluidics because of their unique characteristics that lead to specific responses to different energy sources and gas-liquid interactions. Many effective and functional bubble-based micromanipulation strategies have been developed and improved, enabling various non-invasive, selective, and precise operations at the microscale. This review begins with a brief introduction of the morphological characteristics and formation of microbubbles. The theoretical foundations and working mechanisms of typical micromanipulations based on acoustic, thermodynamic, and chemical microbubbles in fluids are described. We critically review the extensive applications and the frontline advances of bubbles in microfluidics, including microflow patterns, position and orientation control, biomedical applications, and development of bubble-based microrobots. We lastly present an outlook to provide directions for the design and application of microbubble-based micromanipulation tools and attract the attention of relevant researchers to the enormous potential of microbubbles in microfluidics.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
9
|
Gao Y, Fajrial AK, Yang T, Ding X. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization. Biomater Sci 2021; 9:1574-1582. [PMID: 33283794 DOI: 10.1039/d0bm01269f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A surface acoustic wave (SAW) is a sound wave travelling on the surface of an elastic material. SAW offers a robust control of the acoustic energy leading to an unparalleled versatility. As an actuator, SAW can exert acoustic forces on particles and fluids thus enabling dexterous micro/nanoscale manipulations. As a sensor, SAW has a unique sensing capability upon changes in the environment. On-chip SAW technology, in which SAW is integrated with modern lab-on-a-chip (LOC), has drawn a lot of attention in recent years and found various exciting applications in micro/nanosystems. In particular, its well-known biocompatibility provides on-chip SAW technology as an exceptional platform for biomaterials research at the small-scale. In this minireview, we highlighted recent advances of on-chip SAW technology for biomaterials manipulation and characterization with a focus on cell-based (e.g. single-cell and multicellular) biomaterials. We also discussed and shared our perspective on future directions for this emerging research field.
Collapse
Affiliation(s)
- Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Apresio K Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tao Yang
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA. and Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|