1
|
Guo Y, Yang P, Dong F, Li H, Gao J, Cheng Z, Wu J, Xu Y, Wang H, Wang H. Lattice Stabilized and Emission Tunable Pure-Bromide Quasi-2D Perovskite for Air-Processed Blue Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414499. [PMID: 39641384 PMCID: PMC11791954 DOI: 10.1002/advs.202414499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Realizing air-processed blue halide perovskite films with tailored emission is significant for promoting the commercialization of perovskite light-emitting diodes (PeLEDs). However, the intrinsically inferior thermodynamic stability and laborious crystallization kinetics control under humidity interference limit the fabrication of blue perovskite emitters in ambient air. Here, air-processed pure-bromide quasi-2D blue perovskite films are achieved with stabilized lattice and tunable emission by interstitial doping of trivalent metallic cations. This strategy improves the formation energy of the perovskite lattice, promotes energy transfer between different n phases, and suppresses intrinsic electron-phonon coupling in the perovskite films. The emission-controllable blue PeLEDs are fabricated in ambient air for the first time. The champion deep blue PeLED shows maximum external quantum efficiency (EQE) of 2.05% and luminance of 246.56 cd m-2, which are comparable to the state-of-the-art of similar devices fabricated in glovebox. The work pioneers a simple method of electronic structure engineering to tune the emission of air-processed blue perovskite, breaking the limitations of thermodynamic stability and crystallization kinetics control of perovskite in ambient air.
Collapse
Affiliation(s)
- Yangyang Guo
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Penghui Yang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Fan Dong
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Huixin Li
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Jialiang Gao
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Zeyi Cheng
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Jiandong Wu
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Yadong Xu
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Hongyue Wang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072P. R. China
| |
Collapse
|
2
|
Yang Z, Wei J, Zheng J, Zhong Z, Du H, He Z, Liu L, Ma Q, Yu X, Wang Y, Zhu H, Wan M, Mai Y. Crystallization Kinetics of Perovskite Films by a Green Mixture Antisolvent for Efficient NiO x-Based Inverted Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19838-19848. [PMID: 38569046 DOI: 10.1021/acsami.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Environment-friendly antisolvents are critical for obtaining highly efficient, reproducible, and sustainable perovskite solar cells (PSCs). Here, we introduced a green mixture antisolvent of ethyl acetate-isopropanol (EA/IPA) to finely regulate the crystal grain growth and related film properties, including the morphology, crystal structure, and chemical composition of the perovskite thin film. The IPA with suitable content in EA plays a key role in achieving a smooth and compact high-quality perovskite thin film, leading to the suppression of film defect-induced nonradiative recombination. As a result, the PSCs based on the EA/IPA (5:1) antisolvent showed a power conversion efficiency of 22.9% with an open-circuit voltage of 1.17 V.
Collapse
Affiliation(s)
- Zigan Yang
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Jiahui Wei
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Jianzha Zheng
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Ziying Zhong
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Huabin Du
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Zhiling He
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Liming Liu
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Qiaoyan Ma
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Yu
- Guangzhou Beihuan Intelligent Transportation Technology Co., Ltd., Guangzhou, Guangdong 510030, China
| | - Yousheng Wang
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Hongbing Zhu
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Meixiu Wan
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Yaohua Mai
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Wang Y, Zeng Z, Zhang Y, Zhang Z, Bi L, He A, Cheng Y, Jen AKY, Ho JC, Tsang SW. Unlocking the Ambient Temperature Effect on FA-Based Perovskites Crystallization by In Situ Optical Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307635. [PMID: 37714163 DOI: 10.1002/adma.202307635] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Multiple cation-composited perovskites are demonstrated as a promising approach to improving the performance and stability of perovskite solar cells (PSCs). However, recipes developed for fabricating high-performance perovskites in laboratories are always not transferable in large-scale production, as perovskite crystallization is highly sensitive to processing conditions. Here, using an in situ optical method, the ambient temperature effect on the crystallization process in multiple cation-composited perovskites is investigated. It is found that the typical solvent-coordinated intermediate phase in methylammonium lead iodide (MAPbI3) is absent in formamidinium lead iodide (FAPbI3), and nucleation is almost completed in FAPbI3 right after spin-coating. Interestingly, it is found that there is noticeable nuclei aggregation in Formamidinium (FA)-based perovskites even during the spin-coating process, which is usually only observed during the annealing in MAPbI3. Such aggregation is further promoted at a higher ambient temperature or in higher FA content. Instead of the general belief of stress release-induced crack formation, it is proposed that the origin of the cracks in FA-based perovskites is due to the aggregation-induced solute depletion effect. This work reveals the limiting factors for achieving high-quality FA-based perovskite films and helps to unlock the existing narrow processing window for future large-scale production.
Collapse
Affiliation(s)
- Yunfan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zixin Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuoqiong Zhang
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, 999077, China
| | - Leyu Bi
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Aoxi He
- College of Materials Science and Engineering and Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Yuanhang Cheng
- School of New Energy, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 21443, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), and Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), and Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
He G, Yang D, Tao S, Yang L, Guo D, Zheng J, Li J, Chen J, Ma D. Synergistic nucleation regulation using 4,4',4''-tris(carbazol-9-yl)-triphenylamine and moisture for stably air-processed high-performance perovskite photodetectors. NANOSCALE 2024. [PMID: 38426276 DOI: 10.1039/d3nr06513h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Perovskite photodetectors (PPDs) offer a promising solution with low cost and high responsivity, addressing the limitations of traditional inorganic photodetectors. However, there is still room for improvement in terms of the dark current and stability of air-processed PPDs. In this study, 4,4',4''-tris(carbazol-9-yl)-triphenylamine (TCTA) was utilized as a nucleation agent to enhance the quality of perovskite films. The synergistic effect of TCTA and moisture promotes rapid nucleation of PbI2-PbCl2, resulting in an increased nucleation rate and the elimination of pinholes in the film. By employing additive engineering, we obtained a PbI2-PbCl2 layer with high coverage, leading to a low density of traps in the corresponding perovskite film. Consequently, the modified PPD exhibits a remarkable reduction in dark current density by over one order of magnitude, reaching 2.4 × 10-10 A cm-2 at -10 mV, along with a large linear dynamic range (LDR) of 183 dB. Furthermore, the resulting PPD demonstrates remarkable stability, retaining 90% of the initial external quantum efficiency (EQE) value even after continuous operation for over 3200 hours. Owing to a fast response time in the nanosecond range, the PPD could convert modulated light signals into electrical signals at a speed of 588 Kbit s-1, highlighting the great potential in the field of optical communication.
Collapse
Affiliation(s)
- Guo He
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- School of Physics and Optoelectronics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Sizhe Tao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Liqing Yang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Dechao Guo
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Jingbo Zheng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Ji Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Jiangshan Chen
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
- Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
5
|
Zhang P, Xiong J, Chen WH, Du P, Song L. Air-processed MAPbI 3 perovskite solar cells achieve 20.87% efficiency and excellent bending resistance enabled via a polymer dual-passivation strategy. Dalton Trans 2023; 52:15974-15985. [PMID: 37847052 DOI: 10.1039/d3dt02080k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In recent years, air-processed MAPbI3 perovskite solar cells (PSCs) have attracted widespread interest from researchers worldwide because of their simple and low-cost fabrication process. Nonetheless, the ambient conditions usually bring about many adverse effects, such as imperfect crystallization and numerous defects in perovskite films, which seriously impact both the photoelectric performance and stability of the device. Therefore, in this work, a polymer dual-passivation strategy was employed by introducing ammonium polyphosphate (APP) as an additive to the green anti-solvent to accurately modify the perovskite layer. APP, which has abundant phosphate and ammonium groups, could simultaneously fill the I/Pb vacancies by Lewis acid-base reactions to restrain defect formation and improve the power conversion efficiency (PCE) of the ultimate device. On the other hand, the long molecular chains of the polymer with a certain flexural ability were easily congregated at the grain boundaries of the perovskite grains, thus enhancing the bending resistance. Consequently, high-quality perovskite films with a dense morphology and large grain size were obtained. Because of the reduced defect density and suppressed non-radiative recombination, the optimal PSC attained a champion PCE of 20.87% with negligible hysteresis. Furthermore, the non-encapsulated APP-modified flexible device also exhibited excellent bending resistance. Only 20% of its normalized PCE was lost after 150 bending cycles at room temperature. This simple, green, low-cost, and reliable strategy for preparing high-efficiency PSCs with good stability can facilitate its commercialization.
Collapse
Affiliation(s)
- Pengyun Zhang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jie Xiong
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wei-Hsiang Chen
- School of Science, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Pingfan Du
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Lixin Song
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Jathar LD, Ganesan S, Awasarmol U, Nikam K, Shahapurkar K, Soudagar MEM, Fayaz H, El-Shafay AS, Kalam MA, Bouadila S, Baddadi S, Tirth V, Nizami AS, Lam SS, Rehan M. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121474. [PMID: 36965686 DOI: 10.1016/j.envpol.2023.121474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.
Collapse
Affiliation(s)
- Laxmikant D Jathar
- Department of Mechanical Engineering, Army Institute of Technology Pune, Maharashtra, 411015, India
| | - S Ganesan
- Department of Mechanical Engineering, Vel Tech Rangarajan & Dr. Sagunthala R & D Institute of Science and Technology Chennai, Tamil Nadu, 600062, India
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology Pune, Maharashtra, 411015, India
| | - Keval Nikam
- Department of Mechanical Engineering, Dr. D. Y. Patil Institute of Engineering, Management and Research, Akurdi, Pune, 411044, India
| | - Kiran Shahapurkar
- Department of Mechanical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Manzoore Elahi M Soudagar
- Department of Mechanical Engineering and University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Mechanical Engineering, School of Technology, Glocal University, Delhi-Yamunotri Marg, Uttar Pradesh, 247121, India
| | - H Fayaz
- Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh, Viet Nam
| | - A S El-Shafay
- Department of Mechanical Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia; Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - M A Kalam
- School of Civil and Environmental Engineering, FEIT, University of Technology Sydney, NSW, 2007, Australia
| | - Salwa Bouadila
- Centre de Recherches et des Technologies de L'Energie, Technopole de Borj-Cédria, B.P N° 95 2050, Hamam Lif, Ben Arous, Tunisia
| | - Sara Baddadi
- Centre de Recherches et des Technologies de L'Energie, Technopole de Borj-Cédria, B.P N° 95 2050, Hamam Lif, Ben Arous, Tunisia
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Asir, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box No. 9004, Asir, Saudi Arabia
| | - Abdul Sattar Nizami
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia; Sustainable Development Study Centre (SDSC), Government College University, Lahore, Pakistan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University , Chennai, India
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
7
|
Jiang J, Nikbin E, Hicks G, Song S, Liu Y, Wong ECN, Manners I, Howe JY, Winnik MA. Polyferrocenylsilane Block Copolymer Spherulites in Dilute Solution. J Am Chem Soc 2023; 145:1247-1261. [PMID: 36598864 DOI: 10.1021/jacs.2c11119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Self-assembly of block copolymers (BCP) into uniform 3D structures in solution is an extremely rare phenomenon. Furthermore, the investigation of general prerequisites for fabricating a specific uniform 3D structure remains unknown and challenging. Here, through a simple one-pot direct self-assembly (heating and cooling) protocol, we show that uniform spherulite-like structures and their precursors can be prepared with various poly(ferrocenyldimethylsilane) (PFS) BCPs in a variety of polar and non-polar solvents. These structures all evolve from elongated lamellae into hedrites, sheaf-like micelles, and finally spherulites as the annealing temperature and supersaturation degree are increased. The key feature leading to this growth trajectory is the formation of secondary crystals by self-nucleation on the surface of early-elongated lamellae. We identified general prerequisites for fabricating PFS BCP spherulites in solution. These include corona/PFS core block ratios in the range of 1-5.5 that favor the formation of 2D structures as well as the development of secondary crystals on the basal faces of platelets at early stages of the self-assembly. The one-pot direct self-assembly provides a general protocol to form uniform spherulites and their precursors consisting of PFS BCPs that match these prerequisites. In addition, we show that manipulation of various steps in the direct self-assembly protocol can regulate the size and shape of the structures formed. These general concepts show promise for the fabrication and optimization of spherulites and their precursors from semicrystalline BCPs with interesting optical, electronic, or biomedical properties using the one-pot direct self-assembly protocol.
Collapse
Affiliation(s)
- Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ehsan Nikbin
- Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Edmond C N Wong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
8
|
Zeng W, He X, Bian H, Guo P, Wang M, Xu C, Xu G, Zhong Y, Lu D, Sofer Z, Song Q, Zhang S. Multi-functional Strategy: Ammonium Citrate-Modified SnO 2 ETL for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43975-43986. [PMID: 36103625 DOI: 10.1021/acsami.2c13309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The tin oxide (SnO2) electron transport layer (ETL) plays a crucial role in perovskite solar cells (PSCs). However, the heterogeneous dispersion of commercial SnO2 colloidal precursors is far from optimized, resulting in dissatisfied device performance with SnO2 ETL. Herein, a multifunctional modification material, ammonium citrate (TAC), is used to modify the SnO2 ETL, bringing four benefits: (1) due to the electrostatic interaction between TAC molecules and SnO2 colloidal particles, more uniformly dispersed colloidal particles are obtained; (2) the TAC molecules distributed on the surface of SnO2 provide nucleation sites for the perovskite film growth, promoting the vertical growth of the perovskite crystal; (3) TAC-doped SnO2 shows higher electron conductivity and better film quality than pristine SnO2 while offering better energy-level alignment with the perovskite layer; and (4) TAC has functional groups of C═O and N-H containing lone pair electrons, which can passivate the defects on the surface of SnO2 and perovskite films through chemical bonding and inhibit the device hysteresis. In the end, the device based on TAC-doped ETL achieved an increased power conversion efficiency (PCE) of 21.58 from 19.75% of the reference without such treatment. Meanwhile, the PSCs using the TAC-doped SnO2 as the ETL maintained 88% of their initial PCE after being stored for about 1000 h under dark conditions and controlled RH of 10-25%.
Collapse
Affiliation(s)
- Wenqi Zeng
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
- Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaofeng He
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
- Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Hongyu Bian
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
- Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Pengju Guo
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Meng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | - Cunyun Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gaobo Xu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yuanxin Zhong
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Dengcheng Lu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic
- Low-dimension Materials and Optoelectronic Devices, International Joint Laboratory of China-Czech Republic, Southwest University, Chongqing 400715, PR China
| | - Qunliang Song
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
- Low-dimension Materials and Optoelectronic Devices, International Joint Laboratory of China-Czech Republic, Southwest University, Chongqing 400715, PR China
| | - Sam Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
- Center for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
9
|
Sun Y, Zhang J, Yu H, Huang C, Huang J. Several Triazine-Based Small Molecules Assisted in the Preparation of High-Performance and Stable Perovskite Solar Cells by Trap Passivation and Heterojunction Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6625-6637. [PMID: 35099917 DOI: 10.1021/acsami.1c21081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The functional group is the main body in modifying the perovskite film, and different functional groups lead to different modification effects. Here, several conjugated triazine-based small molecules such as melamine (Cy-NH2), cyanuric acid (Cy-OH), cyanuric fluoride (Cy-F), cyanuric chloride (Cy-Cl), and thiocyanuric acid (Cy-SH) are used to modify perovskite films by mixing in antisolvent. The crystallizations of perovskites are optimized by these molecules, and the perovskite films with low trap density are obtained by forming Lewis adducts with these molecules (Pb2+ and electron-donating groups including -NH2, C═N-, and C═O; I- and electron-withdrawing groups including F, Cl, N-H, and O-H). Especially for the Cy-F and Cy-Cl, the heterojunction structure is formed in the perovskite layer by p-type modification, which is conducive to charge transfer and collection in PSCs. Compared with that of control devices, the performance of devices with trap passivation and heterojunction engineering is obviously improved from 18.49 to 20.71% for MAPbI3 and 19.27 to 21.11% for FA0.85Cs0.15PbI3. Notably, the excellent moisture (retaining 67%, RH: 50% for 20 days) and thermal (retaining 64%, 85 °C for 72 h) stability of PSCs are obtained by a kind of second modification (Cy-F/Cy-SH)─spin-coating a few Cy-SH on the Cy-F-modified perovskite film surface. It also reduces Pb pollution because Cy-SH is a highly potent chelating agent. Therefore, this work also provides an effective method to obtain high-performance, stable, and low-lead pollution PSCs, combining trap passivation, heterojunction engineering, and surface treatment.
Collapse
Affiliation(s)
- Yapeng Sun
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Jiankai Zhang
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
- State Key Lab of Subtropical Building Science, South China University of Technology, 510640 Guangzhou, China
| | - Chengwen Huang
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Jinzhen Huang
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
10
|
Zarabinia N, Lucarelli G, Rasuli R, De Rossi F, Taheri B, Javanbakht H, Brunetti F, Brown TM. Simple and effective deposition method for solar cell perovskite films using a sheet of paper. iScience 2022; 25:103712. [PMID: 35098098 PMCID: PMC8783128 DOI: 10.1016/j.isci.2021.103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 12/03/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Most laboratories employ spin coating with application of antisolvent to achieve high efficiency in perovskite solar cells. However, this method wastes a lot of material and is not industrially usable. Conversely, large area coating techniques such as blade and slot-die require high precision engineering both for deposition of ink and for gas or for electromagnetic drying procedures that replace, out of necessity, anti-solvent engineering. Here we present a simple and effective method to deposit uniform high-quality perovskite films with a piece of paper as an applicator at low temperatures. We fabricated solar cells on flexible PET substrates manually with 11% power conversion efficiency. Deposition after soaking the sheet of paper in a green antisolvent improved the efficiency by 82% compared to when using dry paper as applicator. This new technique enables manual film deposition without any expensive equipment and has the potential to be fully automated for future optimization and exploitation. New method for depositing perovskite films with a piece of paper is demonstrated Soaking paper applicator in antisolvent boosts efficiency of solar cells by 82% Paper possesses right porosity and smoothness for deposition of high quality films Flexible perovskite solar cell efficiency made manually via paper applicator is 11%
Collapse
Affiliation(s)
- Nazila Zarabinia
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Giulia Lucarelli
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Reza Rasuli
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Francesca De Rossi
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Babak Taheri
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Hamed Javanbakht
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Brunetti
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Thomas M. Brown
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Corresponding author
| |
Collapse
|
11
|
Zhang Y, Kirs A, Ambroz F, Lin CT, Bati ASR, Parkin IP, Shapter JG, Batmunkh M, Macdonald TJ. Ambient Fabrication of Organic-Inorganic Hybrid Perovskite Solar Cells. SMALL METHODS 2021; 5:e2000744. [PMID: 34927807 DOI: 10.1002/smtd.202000744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted significant attention in recent years due to their high-power conversion efficiency, simple fabrication, and low material cost. However, due to their high sensitivity to moisture and oxygen, high efficiency PSCs are mainly constructed in an inert environment. This has led to significant concerns associated with the long-term stability and manufacturing costs, which are some of the major limitations for the commercialization of this cutting-edge technology. Over the past few years, excellent progress in fabricating PSCs in ambient conditions has been made. These advancements have drawn considerable research interest in the photovoltaic community and shown great promise for the successful commercialization of efficient and stable PSCs. In this review, after providing an overview to the influence of an ambient fabrication environment on perovskite films, recent advances in fabricating efficient and stable PSCs in ambient conditions are discussed. Along with discussing the underlying challenges and limitations, the most appropriate strategies to fabricate efficient PSCs under ambient conditions are summarized along with multiple roadmaps to assist in the future development of this technology.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - Ashleigh Kirs
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - Filip Ambroz
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - Chieh-Ting Lin
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, W12 0BZ, UK
| | - Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ivan P Parkin
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Munkhbayar Batmunkh
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Thomas J Macdonald
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
12
|
Sánchez S, Pfeifer L, Vlachopoulos N, Hagfeldt A. Rapid hybrid perovskite film crystallization from solution. Chem Soc Rev 2021; 50:7108-7131. [PMID: 33969365 DOI: 10.1039/d0cs01272f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of a solution process to grow perovskite thin films allows to extend the material processability. It is known that the physicochemical properties of the perovskite material can be tuned by altering the solution precursors as well as by controlling the crystal growth of the film. This advancement necessarily implies the need for an understanding of the kinetic phenomena for the thin-film formation. Therefore, in this work we review the state of the art of perovskite hybrid crystal growth, starting from a comprehensive theoretical description towards broad experimental investigations. One part of the study focuses on rapid thermal annealing as a tool to control nucleation and crystal growth. We deduce that controlling crystal growth with high-precision photonic sintering simplifies the experimental framework required to understand perovskite crystallization. These types of synthesis methods open a new empirical parameter space. All this knowledge serves to improve the perovskite synthesis and the thin films' quality, which will result in higher device performances.
Collapse
Affiliation(s)
- Sandy Sánchez
- Laboratory of Photomolecular Sciences, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. and Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nikolaos Vlachopoulos
- Laboratory of Photomolecular Sciences, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Anders Hagfeldt
- Laboratory of Photomolecular Sciences, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Wang M, Wu Y, Juan F, Li Y, Shi B, Xu F, Jia J, Wei H, Cao B. Enhanced photocurrent of perovskite solar cells by dual-sensitized β-NaYF4:Nd3+/Yb3+/Er3+ up-conversion nanoparticles. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Xiao S, Zhang K, Zheng S, Yang S. Good or evil: what is the role of water in crystallization of organometal halide perovskites? NANOSCALE HORIZONS 2020; 5:1147-1154. [PMID: 32567637 DOI: 10.1039/d0nh00270d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perovskite solar cells (PSCs) have the potential to become one of the most cost-efficient photovoltaic devices. However, current fabrication methods of PSCs still require strict environment control and ultrahigh purity chemicals, which could prevent their large-scale commercialization. To tackle this challenge, the role of water is the first to be thoroughly understood in a perovskite formation process. Until now, there is still controversy about whether water is harmful or beneficial for perovskite formation, not to mention exactly what role water plays therein. In this Focus article, we review recent studies on water involved chemical reactions, solvent interaction, intermediates, and crystal growth in the perovskite film formation process, in order to bring out a full picture about what water does in the perovskite formation process. As our current understanding stands, a suitable amount of water could be of help for growing high quality perovskite films due to the resultant formation of intermediates, such as MAPbI3·H2O, which facilitates the conversion from precursors to perovskites. However, too much water would induce the formation of relatively stable components, such as (MA)4PbI6·2H2O, which are left in the product-films as impurities resulting in degraded device performance. Continual efforts should be made to further understand and develop water-involved strategies for consistent PSC fabrication under ambient conditions.
Collapse
Affiliation(s)
- Shuang Xiao
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.
| | | | | | | |
Collapse
|