1
|
Wang X, Chen Y, Ma C, Bi L, Su Z, Li W, Wang Z. Current advances and future prospects of blood-based techniques for identifying benign and malignant pulmonary nodules. Crit Rev Oncol Hematol 2025; 207:104608. [PMID: 39761937 DOI: 10.1016/j.critrevonc.2024.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, highlighting the urgent need for more accurate and minimally invasive diagnostic tools to improve early detection and patient outcomes. While low-dose computed tomography (LDCT) is effective for screening in high-risk individuals, its high false-positive rate necessitates more precise diagnostic strategies. Liquid biopsy, particularly ctDNA methylation analysis, represents a promising alternative for non-invasive classification of indeterminate pulmonary nodules (IPNs). This review highlights the progress and clinical potential of liquid biopsy technologies, including traditional proteins markers, cfDNA, exosomes, metabolomics, circulating tumor cells (CTCs) and platelets, in lung cancer diagnosis. We discuss the integration of ctDNA methylation analysis with traditional imaging and clinical data to enhance the early detection of IPNs, as well as potential solutions to address the challenges of low biomarker concentration and background noise. By advancing precision diagnostics, liquid biopsy technologies could transform lung cancer management, improve survival rates, and reduce the disease burden.
Collapse
Affiliation(s)
- Xin Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanmei Chen
- Health Management Center, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Afridi WA, Picos SH, Bark JM, Stamoudis DAF, Vasani S, Irwin D, Fielding D, Punyadeera C. Minimally invasive biomarkers for triaging lung nodules-challenges and future perspectives. Cancer Metastasis Rev 2025; 44:29. [PMID: 39888565 PMCID: PMC11785609 DOI: 10.1007/s10555-025-10247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
CT chest scans are commonly performed worldwide, either in routine clinical practice for a wide range of indications or as part of lung cancer screening programs. Many of these scans detect lung nodules, which are small, rounded opacities measuring 8-30 mm. While the concern about nodules is that they may represent early lung cancer, in screening programs, only 1% of such nodules turn out to be cancer. This leads to a series of complex decisions and, at times, unnecessary biopsies for nodules that are ultimately determined to be benign. Additionally, patients may be anxious about the status of detected lung nodules. The high rate of false positive lung nodule detections has driven advancements in biomarker-based research aimed at triaging lung nodules (benign versus malignant) to identify truly malignant nodules better. Biomarkers found in biofluids and breath hold promise owing to their minimally invasive sampling methods, ease of use, and cost-effectiveness. Although several biomarkers have demonstrated clinical utility, their sensitivity and specificity are still relatively low. Combining multiple biomarkers could enhance the characterisation of small pulmonary nodules by addressing the limitations of individual biomarkers. This approach may help reduce unnecessary invasive procedures and accelerate diagnosis in the future. This review offers a thorough overview of emerging minimally invasive biomarkers for triaging lung nodules, emphasising key challenges and proposing potential solutions for biomarker-based nodule differentiation. It focuses on diagnosis rather than screening, analysing research published primarily in the past five years with some exceptions. The incorporation of biomarkers into clinical practice will facilitate the early detection of malignant nodules, leading to timely interventions and improved outcomes. Further efforts are needed to increase the cost-effectiveness and practicality of many of these applications in clinical settings. However, the range of technologies is advancing rapidly, and they may soon be implemented in clinics in the near future.
Collapse
Affiliation(s)
- Waqar Ahmed Afridi
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
- Virtual University of Pakistan, Islamabad, 44000, Pakistan
| | - Samandra Hernandez Picos
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Juliana Muller Bark
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Danyelle Assis Ferreira Stamoudis
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, 4006, Australia
| | - Darryl Irwin
- The Agena Biosciences, Bowen Hills, Brisbane, 4006, Australia
| | - David Fielding
- The Royal Brisbane and Women's Hospital, Herston, Brisbane, 4006, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia.
| |
Collapse
|
3
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2024:S0962-8924(24)00210-1. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
4
|
Jiang W, Wu J, Lin X, Chen Z, Lin L, Yang J. Enumeration and Molecular Characterization of Circulating Tumor Cell Using an Epithelial Cell Adhesion Molecule/Vimentin/Epidermal Growth Factor Receptor Joint Capture System in Lung Cancer. Clin Med Insights Oncol 2024; 18:11795549241231568. [PMID: 38525298 PMCID: PMC10960340 DOI: 10.1177/11795549241231568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/20/2024] [Indexed: 03/26/2024] Open
Abstract
Background Detection rate and isolation yield of circulating tumor cells (CTCs) are low in lung cancer with approaches due to CTC invasiveness and heterogeneity. In this study, on the basis of the epithelial cell adhesion molecule (EpCAM) phenotype, markers of vimentin and epidermal growth factor receptor (EGFR) phenotype were added to jointly construct a precise and efficient CTC capture system for capture of lung cancer CTCs. Methods A CTC capture system combined with EpCAM lipid magnetic bead (Ep-LMB)/vimentin lipid magnetic bead (Vi-LMB)/EGFR lipid magnetic bead (EG-LMB) was constructed, and its performance was tested. The amount of CTC captured in the blood of patients with lung cancer was detected by immunofluorescence identification and analyzed for clinical relevance. Results The constructed CTC capture system has low cytotoxicity. The capture efficiency of lung cancer cells in phosphate belanced solution (PBS) system was 95.48%. The capture efficiency in the blood simulation system is 94.55%. The average number of CTCs in the blood of patients with lung cancer was 9.73/2 mL. The quantity distribution of CTCs is significantly correlated with tumor staging and metastasis. The area under the curve (AUC) of CTCs for the diagnosis of lung cancer was 0.9994 (95% CI = 0.9981-1.000, P < .0001). The cutoff value was 4.5/2 mL. The sensitivity was 99.39%, and the specificity was 96.88%. Conclusion The EpCAM/vimentin/EGFR combined capture system has feasibility and high sensitivity in the detection of lung cancer CTC typing, which can be used as an auxiliary diagnostic indicator for lung cancer and is expected to promote the clinical application of CTCs.
Collapse
Affiliation(s)
- Wentan Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingyang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xianbin Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhiyao Chen
- Department of Gastrointestinal and Esophageal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liangan Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiansheng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
5
|
Jiang S, Wang H, Zhu J, Xu X, Chen L, Wang B, Zhou B, Zhu Y, Zhang Z, Ma B, Du B, Yang Y. Identify the Clinicopathological Characteristics of Lung Carcinoma Patients Being False Negative in Folate Receptor Based Circulating Tumor Cell Detection. SMALL METHODS 2023; 7:e2300055. [PMID: 37330646 DOI: 10.1002/smtd.202300055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/27/2023] [Indexed: 06/19/2023]
Abstract
In lung cancer diagnosis, folate receptor (FR)-based circulating tumor cell (CTC) has shown its ability to distinguish malignancy from benign disease to some extent. However, there are still some patients that cannot be identified by FR-based CTC detection. And studies comparing the characteristics between true positive (TP) and false negative (FN) patients are few. Thus, the study comprehensively analyzes the clinicopathological characteristics of FN and TP patients in the current study. According to inclusion and exclusion criteria, 3420 patients are enrolled. Combining the pathological diagnosis with CTC results, patients are divided into FN and TP groups, and clinicopathological characteristics are compared between two groups. Compared with TP patients, FN patients have smaller tumor, early T stage, early pathological stage, and without lymph node metastasis. Epidermal growth factor receptor (EGFR) mutation status is different between FN and TP group. And this result is also demonstrated in lung adenocarcinoma subgroup but not in lung squamous cell carcinoma subgroup. Tumor size, T stage, pathological stage, lymph node metastasis, and EGFR mutation status may influence the accuracy of FR-based CTC detection in lung cancer. However, further prospective studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Siming Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinnan Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linsong Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bo Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhemin Zhang
- Department of Respiratory Medicine Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Benting Ma
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
6
|
Wang D, Li P, Fei X, Che S, Li J, Xuan Y, Wang J, Han Y, Gu W, Wang Y. A combined diagnostic model based on circulating tumor cell in patients with solitary pulmonary nodules. J Gene Med 2023; 25:e3529. [PMID: 37194408 DOI: 10.1002/jgm.3529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Although many prediction models in diagnosis of solitary pulmonary nodules (SPNs) have been developed, few are widely used in clinical practice. It is therefore imperative to identify novel biomarkers and prediction models supporting early diagnosis of SPNs. This study combined folate receptor-positive circulating tumor cells (FR+ CTC) with serum tumor biomarkers, patient demographics and clinical characteristics to develop a prediction model. METHODS A total of 898 patients with a solitary pulmonary nodule who received FR+ CTC detection were randomly assigned to a training set and a validation set in a 2:1 ratio. Multivariate logistic regression was used to establish a diagnostic model to differentiate malignant and benign nodules. The receiver operating curve (ROC) and the area under the curve (AUC) were calculated to assess the diagnostic efficiency of the model. RESULTS The positive rate of FR+ CTC between patients with non-small cell lung cancer (NSCLC) and benign lung disease was significantly different in both the training and the validation dataset (p < 0.001). The FR+ CTC level was significantly higher in the NSCLC group compared with that of the benign group (p < 0.001). FR+ CTC (odds ratio, OR, 95% confidence interval, CI: 1.13, 1.07-1.19, p < 0.0001), age (OR, 95% CI: 1.06, 1.01-1.12, p = 0.03) and sex (OR, 95% CI: 1.07, 1.01-1.13, p = 0.01) were independent risk factors of NSCLC in patients with a solitary pulmonary nodule. The area under the curve (AUC) of FR+ CTC in diagnosing NSCLC was 0.650 (95% CI, 0.587-0.713) in the training set and 0.700 (95% CI, 0.603-0.796) in the validation set, respectively. The AUC of the combined model was 0.725 (95% CI, 0.659-0.791) in the training set and 0.828 (95% CI, 0.754-0.902) in the validation set, respectively. CONCLUSIONS We confirmed the value of FR+ CTC in diagnosing SPNs and developed a prediction model based on FR+ CTC, demographic characteristics, and serum biomarkers for differential diagnosis of solitary pulmonary nodules.
Collapse
Affiliation(s)
- Dong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Li
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuyu Che
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinlong Li
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunpeng Xuan
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinglong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yudong Han
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiqing Gu
- Department of Oncology, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Xiao X, Miao X, Duan S, Liu S, Cao Q, Wu R, Tao C, Zhao J, Qu Q, Markiewicz A, Peng R, Chen Y, Żaczek A, Liu J. Single-Cell Enzymatic Screening for Epithelial Mesenchymal Transition with an Ultrasensitive Superwetting Droplet-Array Microchip. SMALL METHODS 2023:e2300096. [PMID: 37086121 DOI: 10.1002/smtd.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
The phenotypic changes of circulating tumor cells (CTCs) during the epithelial-mesenchymal transition (EMT) have been a hot topic in tumor biology and cancer therapeutic development. Here, an integrated platform of single-cell fluorescent enzymatic assays with superwetting droplet-array microchips (SDAM) for ultrasensitive functional screening of epithelial-mesenchymal sub-phenotypes of CTCs is reported. The SDAM can generate high-density, volume well-defined droplet (0.66 nL per droplet) arrays isolating single tumor cells via a discontinuous dewetting effect. It enables sensitive detection of MMP9 enzyme activities secreted by single tumor cells, correlating to their epithelial-mesenchymal sub-phenotypes. In the pilot clinical double-blind tests, the authors have demonstrated that SDAM assays allow for rapid identification and functional screening of CTCs with different epithelial-mesenchymal properties. The consistency with the clinical outcomes validates the usefulness of single-cell secreted MMP9 as a biomarker for selective CTC screening and tumor metastasis monitoring. Convenient addressing and recovery of individual CTCs from SDAM have been demonstrated for gene mutation sequencing, immunostaining, and transcriptome analysis, revealing new understandings of the signaling pathways between MMP9 secretion and the EMT regulation of CTCs. The SDAM approach combined with sequencing technologies promises to explore the dynamic EMT plasticity of tumors at the single-cell level.
Collapse
Affiliation(s)
- Xiang Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xinxing Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Shanzhou Duan
- Department of thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, P. R. China
| | - Sidi Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qinghua Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Renfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chengcheng Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qing Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdańsk, 80-211, Poland
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yongbing Chen
- Department of thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, P. R. China
| | - Anna Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdańsk, 80-211, Poland
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
8
|
Xu Y, Li Q, Lin Z, Lin Y. The value of folate receptor-positive circulating tumor cells in the diagnosis of lung cancer and its correlation with clinical characteristics. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:374-383. [PMID: 36977421 DOI: 10.1111/crj.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE The aim of this research is to investigate the feasibility of folate receptor-positive circulating tumor cells (FR+CTCs) as a biomarker for the diagnosis of malignant pulmonary nodules and the correlation between clinicopathological factors and FR+CTC levels. METHODS Patients initially diagnosed with one or more pulmonary nodules from a computed tomography scan were prospectively included. Three milliliters of peripheral blood was collected from each participant for FR+CTC analysis prior to surgery. Clinical and pathological parameters and FR+CTC levels were compared between patients with lung cancer and benign diseases. RESULTS Six hundred fifty-three patients had lung cancer and the other 124 had benign lung diseases based on pathological examinations of the resected specimens. The median FR+CTC value of the lung cancer group was 12.0 (95% CI 9.6-16.2) FU/3 mL and that of the benign group was 7.2 (95% CI 5.78-11.2) FU/3 mL. The difference was statistically significant (P < 0.0001). In a receiver operating characteristic analysis to distinguish the two groups, the area under curve of FR+CTC was 0.7457 (95% CI 0.6893-0.8021; P < 0.0001) using a cutoff of 8.65 FU/3 mL. The sensitivity was 86.37%, and the specificity was 74.19%. Combined with conventional serum tumor biomarkers, the area under curve was 0.922 (0.499-0.963). The sensitivity was 92.20%, and the specificity was 83.05%. FR+CTC levels were related to tumor staging (P4 < 0.001), the degree of tumor invasion both in single (P = 0.011) and multiple lesions (P = 0.022), pathological subtypes (P = 0.013), and maximum tumor diameter (P = 0.014). CONCLUSIONS FR+CTC is an effective and reliable biomarker for the diagnosis of lung cancer. Further, FR+CTC level is correlated with tumor staging, degree of invasion, pathological subtypes, and tumor size.
Collapse
Affiliation(s)
- Yunjian Xu
- Department of Clinical Lab, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianjun Li
- Department of Clinical Lab, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhijian Lin
- Department of Clinical Lab, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongping Lin
- Department of Clinical Lab, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zhou C, Zhao R, Zhao R, Wang A, Li W. Preoperative levels of folate receptor-positive circulating tumor cells in different subtypes of early-stage lung adenocarcinoma: Predictive value for determining extent of surgical resection. Front Oncol 2023; 13:1119807. [PMID: 37139152 PMCID: PMC10150082 DOI: 10.3389/fonc.2023.1119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
Background The objective was to measure the correlations of preoperative levels of folate receptor-positive circulating tumor cells (FR+CTCs) with clinical characteristics and histologic subtype in early-stage lung adenocarcinoma, and to determine the predictive value of FR+CTC level in preoperative determination of the extent of surgical resection. Patients and methods In this retrospective, single-institution, observational study, preoperative FR+CTC levels were measured via ligand-targeted enzyme-linked polymerization in patients with early-stage lung adenocarcinoma. Receiver operating characteristic (ROC) analysis was used to identify the optimal cutoff value of FR+CTC level for prediction of various clinical characteristics and histologic subtypes. Results No significant difference in FR+CTC level was observed among patients with adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) (P = 0.813). Within the non-mucinous adenocarcinoma group, no difference was observed among patients with tumors whose predominant growth patterns were lepidic, acinar, papillary, micropapillary, solid, and complex gland (P = 0.053). However, significant differences in FR+CTC level were observed between patients with and without the micropapillary subtype [11.21 (8.22-13.61) vs. 9.85 (7.43-12.63), P = 0.017], between those with and without the solid subtype [12.16 (8.27-14.90) vs. 9.87 (7.50-12.49), P = 0.022], and between those with any of the advanced subtypes (micropapillary, solid, or complex glands) vs. none of these [10.48 (7.83-13.67) vs. 9.76 (7.42-12.42), P = 0.032]. FR+CTC level was also correlated with degree of differentiation of lung adenocarcinoma (P = 0.033), presence of visceral pleural invasion (VPI) of lung carcinoma (P = 0.003), and lymph node metastasis of lung carcinoma (P = 0.035). Conclusion FR+CTC level is of potential predictive value in determining the presence of aggressive histologic patterns (micropapillary, solid, and advanced subtypes), degree of differentiation, and occurrence of VPI and lymph node metastasis in IAC. Measurement of FR+CTC level combined with intraoperative frozen sections may represent a more effective method of guiding resection strategy in cases of cT1N0M0 IAC with high-risk factors.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Zhao
- Department of Thoracic Surgery, ShuYang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Wentao Li, ; Ansheng Wang,
| | - Wentao Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wentao Li, ; Ansheng Wang,
| |
Collapse
|
10
|
Shi J, Li F, Yang F, Dong Z, Jiang Y, Nachira D, Chalubinska-Fendler J, Sio TT, Kawaguchi Y, Takizawa H, Song X, Hu Y, Duan L. The combination of computed tomography features and circulating tumor cells increases the surgical prediction of visceral pleural invasion in clinical T1N0M0 lung adenocarcinoma. Transl Lung Cancer Res 2022; 10:4266-4280. [PMID: 35004255 PMCID: PMC8674597 DOI: 10.21037/tlcr-21-896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Background Visceral pleural invasion (VPI) is a clinical manifestation associated with a poor prognosis, and diagnosing it preoperatively is highly imperative for successful sublobar resection of these peripheral tumors. We evaluated the roles of computed tomography (CT) features and circulating tumor cells (CTCs) for improving VPI detection in patients with clinical T1N0M0 invasive lung adenocarcinoma. Methods Three hundred and ninety-one patients were reviewed retrospectively in this study, of which 234 presented with a pleural tag or pleural contact on CT images. CTCs positive for the foliate receptors were enriched and analyzed prior to surgery. Logistic regression analyses were performed to assess the association of CT features and CTCs with VPI, and the receiver operating characteristic (ROC) curve was generated to compare the predictive power of these variables. Results Patients mostly underwent either segmentectomies (18.9%) or lobectomies (79.0%). Only 49 of the 234 patients with pleural involvement on CT showed pathologically confirmed VPI. Multivariate logistic regression analysis revealed that CTC level ≥10.42 FU/3 mL was a significant VPI risk factor for invasive adenocarcinoma cases ≤30 mm [adjusted odds ratio (OR) =4.62, 95% confidence interval (CI): 2.05–10.44, P<0.001]. Based on CT features, subgroup analyses showed that the solid portion size was a statistically significant independent predictor of VPI for these peripheral nodules with pleural tag, while the solid portion length of the interface was an independent predictor of pleural contact. The receiver operating curve analyses showed that the combination of CTC and CT features were highly predictive of VPI [area under the curve (AUC) =0.921 for pleural contact and 0.862 for the pleural tag, respectively]. Conclusions CTC, combined with CT features of pleural tag or pleural contact, could significantly improve VPI detection in invasive lung adenocarcinomas at clinical T1N0M0 stage prior to the patient’s surgery.
Collapse
Affiliation(s)
- Jinghan Shi
- Department of Endoscopy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengwei Dong
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A.Gemelli", IRCCS, Rome, Italy
| | | | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Yo Kawaguchi
- Division of General Thoracic Surgery, Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Hu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Liu C, Xiang X, Han S, Lim HY, Li L, Zhang X, Ma Z, Yang L, Guo S, Soo R, Ren B, Wang L, Goh BC. Blood-based liquid biopsy: Insights into early detection and clinical management of lung cancer. Cancer Lett 2022; 524:91-102. [PMID: 34656690 DOI: 10.1016/j.canlet.2021.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Currently, early detection of lung cancer relies on the characterisation of images generated from computed tomography (CT). However, lung tissue biopsy, a highly invasive surgical procedure, is required to confirm CT-derived diagnostic results with very high false-positive rates. Hence, a non-invasive or minimally invasive biomarkers is essential to complement the existing low-dose CT (LDCT) for early detection, improve responses to a certain treatment, predict cancer recurrence, and to evaluate prognosis. In the past decade, liquid biopsies (e.g., blood) have been demonstrated to be highly effective for lung cancer biomarker discovery. In this review, the roles of emerging liquid biopsy-derived biomarkers such as circulating nucleic acids, circulating tumour cells (CTCs), long non-coding RNA (lncRNA), and microRNA (miRNA), as well as exosomes, have been highlighted. The advantages and limitations of these blood-based minimally invasive biomarkers have been discussed. Furthermore, the current progress of the identified biomarkers for clinical management of lung cancer has been summarised. Finally, a potential strategy for the early detection of lung cancer, using a combination of LDCT scans and well-validated biomarkers, has been discussed.
Collapse
Affiliation(s)
- Cuiliu Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuangqing Han
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Hannah Ying Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Lingrui Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xing Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Li Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ross Soo
- Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| |
Collapse
|
12
|
Jiang M, Jin S, Han J, Li T, Shi J, Zhong Q, Li W, Tang W, Huang Q, Zong H. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res 2021; 9:85. [PMID: 34798902 PMCID: PMC8605607 DOI: 10.1186/s40364-021-00326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Histopathological examination (biopsy) is the "gold standard" for the diagnosis of colorectal cancer (CRC). However, biopsy is an invasive method, and due to the temporal and spatial heterogeneity of the tumor, a single biopsy cannot reveal the comprehensive biological characteristics and dynamic changes of the tumor. Therefore, there is a need for new biomarkers to improve CRC diagnosis and to monitor and treat CRC patients. Numerous studies have shown that "liquid biopsy" is a promising minimally invasive method for early CRC detection. A liquid biopsy mainly samples circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA) and extracellular vesicles (EVs). CTCs are malignant cells that are shed from the primary tumors and/or metastases into the peripheral circulation. CTCs carry information on both primary tumors and metastases that can reflect dynamic changes in tumors in a timely manner. As a promising biomarker, CTCs can be used for early disease detection, treatment response and disease progression evaluation, disease mechanism elucidation, and therapeutic target identification for drug development. This review will discuss currently available technologies for plasma CTC isolation and detection, their utility in the management of CRC patients and future research directions.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jinming Han
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Tong Li
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.,Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Qian Zhong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wen Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Qinqin Huang
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Zhang W, Duan X, Zhang Z, Yang Z, Zhao C, Liang C, Liu Z, Cheng S, Zhang K. Combination of CT and telomerase+ circulating tumor cells improves diagnosis of small pulmonary nodules. JCI Insight 2021; 6:148182. [PMID: 33905377 PMCID: PMC8262359 DOI: 10.1172/jci.insight.148182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early diagnosis and treatment are key to the long-term survival of lung cancer patients. Although CT has significantly contributed to the early diagnosis of lung cancer, there are still consequences of excessive or delayed treatment. By improving the sensitivity and specificity of circulating tumor cell (CTC) detection, a solution was proposed for differentiating benign from malignant pulmonary nodules. METHODS In this study, we used telomerase reverse transcriptase–based (TERT-based) CTC detection (TBCD) to distinguish benign from malignant pulmonary nodules < 2 cm and compared this method with the pathological diagnosis as the gold standard. FlowSight and FISH were used to confirm the CTCs detected by TBCD. RESULTS Our results suggest that CTCs based on TBCD can be used as independent biomarkers to distinguish benign from malignant nodules and are significantly superior to serum tumor markers. When the detection threshold was 1, the detection sensitivity and specificity of CTC diagnosis were 0.854 and 0.839, respectively. For pulmonary nodules ≤ 1 cm and 1–2 cm, the sensitivity and specificity of CTCs were both higher than 77%. Additionally, the diagnostic ability of CTC-assisted CT was compared by CT detection. The results show that CT combined with CTCs could significantly improve the differentiation ability of benign and malignant nodules in lung nodules < 2 cm and that the sensitivity and specificity could reach 0.899 and 0.839, respectively. CONCLUSION TBCD can effectively diagnose pulmonary nodules and be used as an effective auxiliary diagnostic scheme for CT diagnosis. FUNDING National Key Research and Development Project grant nos. 2019YFC1315700 and 2017YFC1308702, CAMS Initiative for Innovative Medicine grant no. 2017-I2M-1-005, and National Natural Science Foundation of China grant no. 81472013.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinchun Duan
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenrong Zhang
- Department of General Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changyun Zhao
- Chongqing Deepexam Biotechnology Co. Ltd., Chongqing, China
| | | | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Li Z, Xu K, Xu L, Dai J, Jin K, Zhu Y, Yang Y, Jiang G. Predictive Value of Folate Receptor-Positive Circulating Tumor Cells for the Preoperative Diagnosis of Lymph Node Metastasis in Patients with Lung Adenocarcinoma. SMALL METHODS 2021; 5:e2100152. [PMID: 34927918 DOI: 10.1002/smtd.202100152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Indexed: 06/14/2023]
Abstract
Noninvasive assessments of the risk of lymph node metastasis (LNM) in patients with lung adenocarcinoma (LAD) are of great value for selecting individualized treatment options. However, the diagnostic accuracies of different preoperative LN evaluation methods in routine clinical practice are not satisfactory. Here, an assessment to detect folate receptor (FR)-positive circulating tumor cells (CTCs) based on ligand-targeted enzyme-linked polymerization is established. FR-positive CTCs have the potential to improve the specificity and sensitivity of diagnosing LNM in lung cancer patients. The addition of CTC level improved the diagnostic efficiency of the initial prediction model that comprises other clinical parameters. A nomogram for predicting preoperative LNM is established, which showed good prediction and calibration capacities and achieved an average area under the curve of 0.786. Good correlations are observed between the CTC level and nodal classifications, such as the number of positive LNs and the ratio of the number of positive LNs to removed LNs (LN ratio or LNR). The ligand-targeted enzyme-linked polymerization-assisted assessment of CTCs enables noninvasive detection and has a useful predictive value for the preoperative diagnosis of LNM in patients with LAD.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507 Zhengmin Road, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Guangzhou, 510120, China
| | - Lekai Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100109, China
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507 Zhengmin Road, Shanghai, 200433, China
| | - Kaiqi Jin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507 Zhengmin Road, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507 Zhengmin Road, Shanghai, 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507 Zhengmin Road, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507 Zhengmin Road, Shanghai, 200433, China
| |
Collapse
|
15
|
Li Z, Xu K, Tartarone A, Santarpia M, Zhu Y, Jiang G. Circulating tumor cells can predict the prognosis of patients with non-small cell lung cancer after resection: a retrospective study. Transl Lung Cancer Res 2021; 10:995-1006. [PMID: 33718038 PMCID: PMC7947419 DOI: 10.21037/tlcr-21-149] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The development of metastasis is the primary cause of death in patients with non-small cell lung cancer (NSCLC). However, identifying those NSCLC patients who will have loco-regional or distant disease recurrence after surgery is still challenging. Circulating tumor cells (CTCs) can accurately reflect the impact of micro-metastasis of tumor cells in circulating blood on patients’ treatment and prognosis. The aim of the present study was to explore the value of preoperative CTC concentration in predicting postoperative metastasis and recurrence risk in patients with NSCLC. Methods This study enrolled 347 patients with stage I–IIIA NSCLC. The CTCs were isolated using folate receptor (FR) positivity from peripheral blood samples before surgery, and then enriched and analyzed. Patients were divided into two groups for retrospective survival analysis based on the geometric mean of CTC concentration. The primary study endpoint was recurrence-free survival. Spearman’s correlation was used to evaluate the relationship between CTC concentration and clinical characteristics of NSCLC patients. A nomogram based on the multivariate Cox regression model was developed to predict recurrence and metastasis in the NSCLC patients. The performance of the nomogram was evaluated using the concordance index, calibration curve, and Hosmer-Lemeshow test. Results The median follow-up time was 38 months. Preoperative CTC concentration was not significantly related to tumor-node-metastasis staging (P>0.05) and was an independent prognostic factor for NSCLC patients [hazard ratio (HR), 5.489; 95% confidence interval (CI): 2.660–11.326, P<0.001]. The nomogram based on preoperative CTC concentration had a concordance index value of 0.82. Validation revealed that the nomogram possessed excellent predictive ability and calibration. Conclusions Preoperative CTC concentration is an independent and sensitive biomarker of prognosis in patients with NSCLC. Our nomogram based on preoperative CTC concentration is an effective and non-invasive tool for predicting the recurrence and metastasis of NSCLC.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Alfredo Tartarone
- Division of Medical Oncology, Department of Onco-Hematology, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (PZ), Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Tongji University School of Medicine, Shanghai, China
| |
Collapse
|