1
|
Xu Y, Zhou Y, Li Y, Zheng Y. Bridging Materials and Analytics: A Comprehensive Review of Characterization Approaches in Metal-Based Solid-State Hydrogen Storage. Molecules 2024; 29:5014. [PMID: 39519655 PMCID: PMC11547599 DOI: 10.3390/molecules29215014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The advancement of solid-state hydrogen storage materials is critical for the realization of a sustainable hydrogen economy. This comprehensive review elucidates the state-of-the-art characterization techniques employed in solid-state hydrogen storage research, emphasizing their principles, advantages, limitations, and synergistic applications. We critically analyze conventional methods such as the Sieverts technique, gravimetric analysis, and secondary ion mass spectrometry (SIMS), alongside composite and structure approaches including Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). This review highlights the crucial role of in situ and operando characterization in unraveling the complex mechanisms of hydrogen sorption and desorption. We address the challenges associated with characterizing metal-based solid-state hydrogen storage materials discussing innovative strategies to overcome these obstacles. Furthermore, we explore the integration of advanced computational modeling and data-driven approaches with experimental techniques to enhance our understanding of hydrogen-material interactions at the atomic and molecular levels. This paper also provides a critical assessment of the practical considerations in characterization, including equipment accessibility, sample preparation protocols, and cost-effectiveness. By synthesizing recent advancements and identifying key research directions, this review aims to guide future efforts in the development and optimization of high-performance solid-state hydrogen storage materials, ultimately contributing to the broader goal of sustainable energy systems.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
- Leshan West Silicon Materials Photovoltaic New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Yang Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuting Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Zhang W, Zhou L, Zhang X, Huang Z, Fang F, Hong Z, Li J, Gao M, Sun W, Pan H, Liu Y. Lithium Borohydride Nanorods: Self-Assembling Growth and Remarkable Hydrogen Cycling Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400965. [PMID: 38506595 DOI: 10.1002/smll.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Nanostructured metal hydrides with unique morphology and improved hydrogen storage properties have attracted intense interests. However, the study of the growth process of highly active borohydrides remains challenging. Herein, for the first time the synthesis of LiBH4 nanorods through a hydrogen-assisted one-pot solvothermal reaction is reported. Reaction of n-butyl lithium with triethylamine borane in n-hexane under 50 bar of H2 at 40-100 °C gives rise to the formation of the [100]-oriented LiBH4 nanorods with 500-800 nm in diameter, whose growth is driven by orientated attachment and ligand adsorption. The unique morphology enables the LiBH4 nanorods to release hydrogen from ≈184 °C, 94 °C lower than the commercial sample (≈278 °C). Hydrogen release amounts to 13 wt% within 40 min at 450 °C with a stable cyclability, remarkably superior to the commercial LiBH4 (≈9.1 wt%). More importantly, up to 180 °C reduction in the onset temperature of hydrogenation is successfully attained by the nanorod sample with respect to the commercial counterpart. The LiBH4 nanorods show no foaming during dehydrogenation, which improves the hydrogen cycling performance. The new approach will shed light on the preparation of nanostructured metal borohydrides as advanced functional materials.
Collapse
Affiliation(s)
- Wenxuan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Linming Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China
| | - Zhenguo Huang
- School of Civil & Environmental Engineering, University of Technology Sydney, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Fang Fang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zijian Hong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China
| | - Juan Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingxia Gao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenping Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongge Pan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yongfeng Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
3
|
Wang Y, Xue Y, Züttel A. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chem Soc Rev 2024; 53:972-1003. [PMID: 38111973 DOI: 10.1039/d3cs00706e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The development of novel materials capable of securely storing hydrogen at high volumetric and gravimetric densities is a requirement for the wide-scale usage of hydrogen as an energy carrier. In recent years, great efforts via nanoscale tuning and designing strategies on both physisorbents and chemisorbents have been devoted to improvements in their thermodynamic and kinetic aspects. Increasing the hydrogen storage capacity/density for physisorbents and chemisorbents and improving the dehydrogenation kinetics of hydrides are still considered a challenge. The extensive and fast development of advanced nanotechnologies has fueled a surge in research that presents huge potential in designing solid-state materials to meet the ultimate U.S. Department of Energy capacity targets for onboard light-duty vehicles, material-handling equipments, and portable power applications. Different from the existing literature, in this review, particular attention is paid to the recent advances in nanoscale engineering of solid-state materials for boosting hydrogen storage, especially the nanoscale tuning and designing strategies. We first present a short overview of hydrogen storage mechanisms of nanoscale engineering for boosted hydrogen storage performance on solid-state materials, for example, hydrogen spillover, nanopump effect, nanosize effect, nanocatalysis, and other non-classical hydrogen storage mechanisms. Then, the focus is on recent advancements in nanoscale engineering strategies aimed at enhancing the gravimetric hydrogen storage capacity of porous materials, reducing dehydrogenation temperature and improving reaction kinetics and reversibility of hydrogen desorption/absorption for metal hydrides. Effective nanoscale tuning strategies for enhancing the hydrogen storage performance of porous materials include optimizing surface area and pore volume, fine-tuning nanopore sizes, introducing nanostructure doping, and crafting nanoarchitecture and nanohybrid materials. For metal hydrides, successful strategies involve nanoconfinement, nanosizing, and the incorporation of nanocatalysts. This review further addresses the points to future research directions in the hope of ushering in the practical applications of hydrogen storage materials.
Collapse
Affiliation(s)
- Yunting Wang
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
- Empa Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Yudong Xue
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
| | - Andreas Züttel
- Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland.
- Empa Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
4
|
Wei Y, Yang Y, Chen Z, Gao P, Ma Q, Gao M, Yan C, Wu Z, Jiang Y, Chen J, Yu X, Li Z, Zhang X, Liu Y, Gao M, Sun W, Pan H. In-Situ-Generated Electron-Blocking LiH Enabling an Unprecedented Critical Current Density of Over 15 mA cm -2 for Solid-State Hydride Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304285. [PMID: 37487246 DOI: 10.1002/adma.202304285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/03/2023] [Indexed: 07/26/2023]
Abstract
LiBH4 is a promising solid-state electrolyte (SE) due to its thermodynamic stability to Li. However, poor Li-ion conductivities at room temperature, low oxidative stabilities, and severe dendrite growth hamper its application. In this work, a partial dehydrogenation strategy is adopted to in situ generate an electronic blocking layer dispersed of LiH, addressing the above three issues simultaneously. The electrically insulated LiH reduces the electronic conductivity by two orders of magnitude, leading to a 32.0-times higher critical electrical bias for dendrite growth on the particle surfaces than that of the counterpart. Additionally, this layer not only promotes the Li-ion conductance by stimulating coordinated rotations of BH4 - and B12 H12 2- , contributing to a Li-ion conductivity of 1.38 × 10-3 S cm-1 at 25 °C, but also greatly enhances oxidation stability by localizing the electron density on BH4 - , extending its voltage window to 6.0 V. Consequently, this electrolyte exhibits an unprecedented critical current density (CCD) of 15.12 mA cm-2 at 25 °C, long-term Li plating and stripping stability for 2700 h, and a wide temperature window for dendrite inhibition from -30 to 150 °C. Its Li-LiCoO2 cell displays high reversibility within 3.0-5.0 V. It is believed that this work provides a clear direction for solid-state hydride electrolytes.
Collapse
Affiliation(s)
- Yiqi Wei
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Zichong Chen
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Panyu Gao
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Qihang Ma
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingxi Gao
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenhui Yan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhijun Wu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yinzhu Jiang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xin Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yongfeng Liu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingxia Gao
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongge Pan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
5
|
Palade P, Comanescu C, Radu C. Synthesis of Nickel and Cobalt Ferrite-Doped Graphene as Efficient Catalysts for Improving the Hydrogen Storage Kinetics of Lithium Borohydride. MATERIALS (BASEL, SWITZERLAND) 2023; 16:427. [PMID: 36614768 PMCID: PMC9822379 DOI: 10.3390/ma16010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Featuring a high hydrogen storage content of up to 20 wt%, complex metal borohydrides remain promising solid state hydrogen storage materials, with the real prospect of reversible behavior for a zero-emission economy. However, the thermodynamic barriers and sluggish kinetics are still barriers to overcome. In this context, nanoconfinement has provided a reliable method to improve the behavior of hydrogen storage materials. The present work describes the thermodynamic and kinetic enhancements of LiBH4 nanoconfined in MFe2O4 (M=Co, Ni) ferrite-catalyzed graphene host. Composites of LiBH4-catalysts were prepared by melt infiltration and investigated by X-ray diffraction, TEM, STEM-EDS and TPD. The role of ferrite additives, metal precursor treatment (Ar, Ar/H2) and the effect on hydrogen storage parameters are discussed. The thermodynamic parameters for the most promising composite LiBH4-graphene-NiFe2O4 (Ar) were investigated by Kissinger plot method, revealing an EA = 127 kJ/mol, significantly lower than that of neat LiBH4 (170 kJ/mol). The reversible H2 content of LiBH4-graphene-NiFe2O4 (Ar) after 5 a/d cycles was ~6.14 wt%, in line with DOE's target of 5.5 wt% storage capacity, while exhibiting the lowest desorption temperature peak of 349 °C. The composites with catalysts treated in Ar have lower desorption temperature due to better catalyst dispersion than using H2/Ar.
Collapse
Affiliation(s)
- Petru Palade
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 77125 Magurele, Romania
| | - Cristian Radu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| |
Collapse
|
6
|
Comanescu C. Paving the Way to the Fuel of the Future-Nanostructured Complex Hydrides. Int J Mol Sci 2022; 24:143. [PMID: 36613588 PMCID: PMC9820751 DOI: 10.3390/ijms24010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hydrides have emerged as strong candidates for energy storage applications and their study has attracted wide interest in both the academic and industry sectors. With clear advantages due to the solid-state storage of hydrogen, hydrides and in particular complex hydrides have the ability to tackle environmental pollution by offering the alternative of a clean energy source: hydrogen. However, several drawbacks have detracted this material from going mainstream, and some of these shortcomings have been addressed by nanostructuring/nanoconfinement strategies. With the enhancement of thermodynamic and/or kinetic behavior, nanosized complex hydrides (borohydrides and alanates) have recently conquered new estate in the hydrogen storage field. The current review aims to present the most recent results, many of which illustrate the feasibility of using complex hydrides for the generation of molecular hydrogen in conditions suitable for vehicular and stationary applications. Nanostructuring strategies, either in the pristine or nanoconfined state, coupled with a proper catalyst and the choice of host material can potentially yield a robust nanocomposite to reliably produce H2 in a reversible manner. The key element to tackle for current and future research efforts remains the reproducible means to store H2, which will build up towards a viable hydrogen economy goal. The most recent trends and future prospects will be presented herein.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, 405A Atomiștilor Str., 77125 Magurele, Romania;
- Faculty of Physics, University of Bucharest, 405, Atomiștilor Str., 77125 Magurele, Romania
| |
Collapse
|
7
|
Xian K, Wu M, Gao M, Wang S, Li Z, Gao P, Yao Z, Liu Y, Sun W, Pan H. A Unique Nanoflake-Shape Bimetallic Ti-Nb Oxide of Superior Catalytic Effect for Hydrogen Storage of MgH 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107013. [PMID: 35253367 DOI: 10.1002/smll.202107013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
MgH2 is one of the most promising solid hydrogen storage materials due to its high capacity, excellent reversibility, and low cost. However, its operation temperature needs to be greatly reduced to realize its practical applications, especially in the highly desired fuel cell fields. This work synthesizes a 2D nanoflake-shape bimetallic Ti-Nb oxide of TiNb2 O7 , which has high surface area and shows superior catalytic effect for the hydrogen storage of MgH2 . Incorporated with the TiNb2 O7 nanoflakes as low as 3 wt%, MgH2 shows a low onset dehydrogenation temperature of 178 °C, which is lowered by 100 °C compared with the pristine one. A dehydrogenation capacity as high as 7.0 wt% H2 is achieved upon heating to 300 °C. The capacity retention is as high as 96% after 30 cycles. The mechanism of the improved hydrogen storage properties is analyzed by density functional theory (DFT) calculation and the microstructural evolution during dehydrogenation and hydrogenation. This work provides an MgH2 system with high available capacity and low operation temperature by a unique structural design of the catalyst. The high surface area feature of the TiNb2 O7 nanoflakes and the synthesis method hopefully can develop the application of TiNb2 O7 .
Collapse
Affiliation(s)
- Kaicheng Xian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Meihong Wu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mingxia Gao
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhenglong Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Panyu Gao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhihao Yao
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yongfeng Liu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongge Pan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
8
|
Comanescu C. Recent Development in Nanoconfined Hydrides for Energy Storage. Int J Mol Sci 2022; 23:7111. [PMID: 35806115 PMCID: PMC9267122 DOI: 10.3390/ijms23137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers' attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Magurele, Romania
| |
Collapse
|
9
|
Yu J, Chen F, Yan S, Qiao K, Zhao S, Zhao X, Zhu B. Facile fabrication of N/O co-doped activated carbon hollow fibers for hydrogen storage at atmospheric pressure. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04080-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
|
11
|
Hydrogen Storage Mechanism in Sodium-Based Graphene Nanoflakes: A Density Functional Theory Study. HYDROGEN 2022. [DOI: 10.3390/hydrogen3010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon materials, such as graphene nanoflakes, carbon nanotubes, and fullerene, can be widely used to store hydrogen, and doping these materials with lithium (Li) generally increases their H2-storage densities. Unfortunately, Li is expensive; therefore, alternative metals are required to realize a hydrogen-based society. Sodium (Na) is an inexpensive element with chemical properties that are similar to those of lithium. In this study, we used density functional theory to systematically investigate how hydrogen molecules interact with Na-doped graphene nanoflakes. A graphene nanoflake (GR) was modeled by a large polycyclic aromatic hydrocarbon composed of 37 benzene rings, with GR-Na-(H2)n and GR-Na+-(H2)n (n = 0–12) clusters used as hydrogen storage systems. Data obtained for the Na system were compared with those of the Li system. The single-H2 GR-Li and GR-Na systems (n = 1) exhibited binding energies (per H2 molecule) of 3.83 and 2.72 kcal/mol, respectively, revealing that the Li system has a high hydrogen-storage ability. This relationship is reversed from n = 4 onwards; the Na systems exhibited larger or similar binding energies for n = 4–12 than the Li-systems. The present study strongly suggests that Na can be used as an alternative metal to Li in H2-storage applications. The H2-storage mechanism in the Na system is also discussed based on the calculated results.
Collapse
|
12
|
Dun C, Jeong S, Liu YS, Leick N, Mattox TM, Guo J, Lee JW, Gennett T, Stavila V, Urban JJ. Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101989. [PMID: 34569721 DOI: 10.1002/smll.202101989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core-shell structure of porous Mg(BH4 )2 -based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet-chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4 )2 . A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ-phase Mg(BH4 )2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol-1 lower than that of Mg(BH4 )2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg- and B- elements) from oxidizing, which is a necessary condition to reversibility.
Collapse
Affiliation(s)
- Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sohee Jeong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Noemi Leick
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Tracy M Mattox
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joo-Won Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Thomas Gennett
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Chemistry Department, Colorado School of Mines, 1012 14th Street, Golden, CO, 80401, USA
| | | | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances. ENERGIES 2021. [DOI: 10.3390/en14217003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Boron-based materials have been widely studied for hydrogen storage applications. Examples of these compounds are borohydrides and boranes. However, all of these present some disadvantages that have hindered their potential application as hydrogen storage materials in the solid-state. Thus, different strategies have been developed to improve the dehydrogenation properties of these materials. The purpose of this review is to provide an overview of recent advances (for the period 2015–2021) in the destabilization strategies that have been considered for selected boron-based compounds. With this aim, we selected seven of the most investigated boron-based compounds for hydrogen storage applications: lithium borohydride, sodium borohydride, magnesium borohydride, calcium borohydride, ammonia borane, hydrazine borane and hydrazine bisborane. The destabilization strategies include the use of additives, the chemical modification and the nanosizing of these compounds. These approaches were analyzed for each one of the selected boron-based compounds and these are discussed in the present review.
Collapse
|