1
|
Liang H, Tong X, Min Y, Wang Y, Wu X, Zheng Y. Improving Catalytic Performance via the Synergy of Tensile Lattice Strain and Plasmonic Enhancement in Defective AuPd@Pd Short Nanowires. Inorg Chem 2024; 63:19489-19498. [PMID: 39361895 DOI: 10.1021/acs.inorgchem.4c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The synthesis of bimetallic nanocatalysts with strained crystal lattices has attracted considerable interest. This is because, beyond the electronic structure modifications realized through elemental doping, the strain effect offers an extra mechanism to fine-tune the electronic structures, thereby possibly improving the catalytic performances. We present a method for constructing defective AuPd@Pd short nanowires, achieved through a controlled galvanic replacement reaction between short AuCu nanowires and Pd precursors. Advanced structural analyses using spherical aberration-corrected transmission electron microscopy (AC-TEM) validated the expanded crystal lattice on the nanowire surface and also demonstrated pronounced plasmonic absorption in the UV-vis region. Leveraging both plasmonic absorption and strain effects, the AuPd@Pd short nanowires displayed a higher apparent rate constant compared to Pd nanoparticles. Integrating molecular dynamic simulations with density functional theory calculations revealed that the tensile strain on AuPd@Pd short nanowires benefited the catalytic activity by elevating the d-band center, thereby intensifying the adsorption of p-nitrophenol. The current research introduces a unique method for synthesizing noble metal nanocrystals with specific dimensions and elucidates the rational development of high-performance plasmonic nanocatalysts through synergistic exploitation of the beneficial strain effect.
Collapse
Affiliation(s)
- Haosheng Liang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiangyu Tong
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061, China
| | - Yuanyuan Min
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| | - Yingying Wang
- Health Management Department, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Xiaohu Wu
- Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan, Shandong 250100, China
| | - Yiqun Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| |
Collapse
|
2
|
Su Q, Yu L. Sub-10 nm PdNi@PtNi Core-Shell Nanoalloys for Efficient Ethanol Electro-Oxidation. Molecules 2024; 29:4853. [PMID: 39459224 PMCID: PMC11510317 DOI: 10.3390/molecules29204853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
By controlling the structure and composition of Pt-based nanoalloys, the ethanol oxidation reaction (EOR) performances of Pt alloy catalysts can be effectively improved. Herein, we successfully synthesis sub-10 nm PdNi@PtNi nanoparticles (PdNi@PtNi NPs) with a core-shell structure by a one-pot method. The sub 10 nm core-shell nanoparticles possess more effective atoms and exhibit a synergistic effect which can lead to a shift in the d-band center and alter binding energies toward adsorbates. Due to the synergistic effect and unique core-shell structure, the PdNi@PtNi NP catalysts exhibit excellent electrocatalytic performance for ethanol oxidation reactions in alkaline, achieving 9.30 times more mass activity and 7.05 times more specific activity that of the state-of-the-art Pt/C catalysts. Moreover, the stability of PdNi@PtNi NPs was also greatly improved over PtNi nanoparticles, PtPd nanoparticles, and commercial Pt/C. This strategy provides a new idea for improving the electrocatalytic performance of Pt-based catalysts for EORs.
Collapse
Affiliation(s)
| | - Lei Yu
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China;
| |
Collapse
|
3
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
4
|
Chen G, Liu Y, Xue S, Zhang R, Lv H, Zhang J, Wu L, Che R. Exceptionally Bifunctional ORR/OER Performance via Synergistic Atom-Cluster Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308192. [PMID: 38072794 DOI: 10.1002/smll.202308192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Indexed: 05/12/2024]
Abstract
The single-atom sites (SAs) have achieved enhanced performance toward oxygen reduction reaction (ORR) with the effective utilization of the active sites. However, the excess adsorption of the intermediates and the limited stability hinders performance improvement. Metal clusters with promising stability and weak adsorption can be used as potential substitutions, but the lack of active sites is considered undesirable for catalytic reactions. Herein, a framework of Fe nanoclusters combined with SAs on One dimensional (1D) carbon nanotubes (Fe3C-NCNTs 90 min CC-1) is synthesized to confirm the synergistic atom-cluster interaction. The composite exhibits strong polarization and electron redistribution between nanocluster and SAs. The electron redistribution will significantly boost the electron transport and the desorption of the intermediates, which is confirmed by off-axis holography and DFT calculation. The electrocatalytic performance is significantly enhanced as the half-wave potential of ORR increased 75 mV and the potential of OER increased 133 mV compared with the sample without nanoclusters. Furthermore, such a bifunctional catalyst endows homemade Zn-air batteries (ZABs) with high power density and long-term stability. This work paves a facile route to design bifunctional ORR/OER electrocatalysts consisting of 0D composite structures.
Collapse
Affiliation(s)
- Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yihao Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Shuyan Xue
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | | | - Hualiang Lv
- Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | | | - Limin Wu
- Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
5
|
Wang C, Shi Y, Qin D, Xia Y. Bimetallic core-shell nanocrystals: opportunities and challenges. NANOSCALE HORIZONS 2023; 8:1194-1204. [PMID: 37376971 DOI: 10.1039/d3nh00098b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
With mastery over the colloidal synthesis of monometallic nanocrystals, a combination of two distinct metals with intricate architectures has emerged as a new direction of innovation. Among the diverse architectures, the one with a core-shell structure has attracted the most scientific endeavors owing to its merits of high controllability and variability. Along with the new hopes arising from the addition of a shell composed of a different metal, there comes unexpected complications for the surface composition, hindering both structural understanding and application performance. In this Focus article, we present a brief overview of the opportunities provided by the bimetallic core-shell nanocrystals, followed by a discussion of the technical challenge to elucidate the true composition of the outermost surface. Some of the promising solutions are then highlighted as well, aiming to inspire future efforts toward this frontier of research.
Collapse
Affiliation(s)
- Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
6
|
Zhang W, Li F, Shi F, Hu H, Liang J, Yang H, Ye Y, Mao Z, Shang W, Deng T, Ke X, Wu J. Tensile-Strained Platinum-Cobalt Alloy Surface on Palladium Octahedra as a Highly Durable Oxygen Reduction Catalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3993-4000. [PMID: 36642872 DOI: 10.1021/acsami.2c18600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing shape-controlled Pt-based core-shell nanocrystals is a prospective strategy to maximize the utilization of Pt while maintaining high activity for oxygen reduction reaction (ORR). However, the core-shell structures with ultrathin Pt shell exhibit limited electrochemical durability. Therefore, a thicker shell is proposed to successfully improve the durability of the core-shell structures by preventing the core from dissolution. Nevertheless, the deposition of Pt tends to switch to the Stranski-Krastanov (S-K) growth mode with the increase of the number of layer, resulting in the absence of a conformal morphology. Herein, we realize the deposition of three-to-five-layer epitaxial Pt-Co layers on Pd octahedral seeds by introducing tensile strain in the epitaxial layer to impede the S-K growth. The as-obtained Pd@Pt-Co octahedra with four layers exhibit enhanced mass activity (0.69 A/mgPt) and specific activity (1.00 mA/cm2) for ORR, which are 4.93 and 5 times that of the commercial Pt/C, respectively. Furthermore, it shows only 17% decay for specific activity after a 30,000-cycle durability test. This work is expected to enlighten the design and synthesis of related core-shell nanocrystals with facetted multicomponent shells, offering a promising strategy for designing cost-effective and efficient catalysts.
Collapse
Affiliation(s)
- Wencong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Hao Hu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jing Liang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Haiyan Yang
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yaoli Ye
- Yuchai Synland Technology Co. Ltd., Nanning 530007, People's Republic of China
| | - Zhengsong Mao
- Yuchai Synland Technology Co. Ltd., Nanning 530007, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaoxing Ke
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
7
|
Xia C, He W, Yang XF, Gao PF, Zhen SJ, Li YF, Huang CZ. Plasmonic Hot-Electron-Painted Au@Pt Nanoparticles as Efficient Electrocatalysts for Detection of H 2O 2. Anal Chem 2022; 94:13440-13446. [PMID: 36130106 DOI: 10.1021/acs.analchem.2c02434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmon-driven catalysis of metal nanostructures has garnered wide interest. Here, a photogenerated plasmonic hot-electron painting strategy was reported to form Au@Pt composite nanoparticles (Au@Pt NPs) with high catalytic reactivity without using reducing agents. Au nanoparticles, including Au nanospheres (Au NSs), Au nanorods (Au NRs), and Au nanobipyramids (Au NBPs), generated hot electrons under localized surface plasmon resonance (LSPR) excitation, which made the platinum precursor reduced as a consequence that Pt(0) atoms were painted on the surface of Au NPs to form an asymmetric Pt shell outside the plasmonic Au core. Compared with bare Au NPs, Au@Pt NPs exhibited significantly enhanced electrocatalytic activity toward reduction of H2O2 due to the bimetallic synergistic effect and great dispersion of Au@Pt NP-modified indium tin oxide (Au@Pt NPs/ITO). It exhibited a linear detection of H2O2 in a wide concentration range from 0.5 to 1000 μM with a low detection limit of 0.11 μM (S/N = 3). Therefore, the plasmonic hot-electron-painted Au@Pt NPs represent a novel and simple method for the design of advanced noble asymmetric metal nanomaterials.
Collapse
Affiliation(s)
- Chang Xia
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wei He
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Xiao Feng Yang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
8
|
Li S, Xu B, Lu M, Sun M, Yang H, Liu S, Huang Z, Liu H. Tensile-Strained Palladium Nanosheets for Synthetic Catalytic Therapy and Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202609. [PMID: 35610760 DOI: 10.1002/adma.202202609] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Palladium nanosheets (Pd NSs) are well-investigated photothermal therapy agents, but their catalytic potential for tumor therapy has been underexplored owing to the inactive dominant (111) facets. Herein, lattice tensile strain is introduced by surface reconstruction to activate the inert surface, endowing the strained Pd NSs (SPd NSs) with photodynamic, catalase-like, and peroxidase-like properties. Tensile strain promoting the photodynamic and enzyme-like activities is revealed by density functional theory calculations. Compared with Pd NSs, SPd NSs exhibit lower photothermal effect, but approximately five times higher tumor inhibition rate. This work calls for further study to activate nanomaterials by strain engineering and surface reconstruction for catalytic therapy of tumors.
Collapse
Affiliation(s)
- Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingzhu Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengxue Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haokun Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhijun Huang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|