1
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
2
|
Sun W, Zhu C, Song J, Ji SC, Jiang BP, Liang H, Shen XC. Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy. Adv Healthc Mater 2023; 12:e2300385. [PMID: 37040018 DOI: 10.1002/adhm.202300385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/25/2023] [Indexed: 04/12/2023]
Abstract
Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H2 S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H2 S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.
Collapse
Affiliation(s)
- Wanying Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Juan Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shi-Chen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
3
|
Du Z, Zhu L, Wang P, Lan X, Lin S, Xu W. Coordination-Driven One-Step Rapid Self-Assembly Synthesis of Dual-Functional Ag@Pt Nanozyme. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301048. [PMID: 37078838 DOI: 10.1002/smll.202301048] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Realizing high-precise and adjustable regulation of engineering nanozyme is important in nanotechnology. Here, Ag@Pt nanozymes with excellent peroxidase-like and antibacterial effects are designed and synthesized by nucleic acid and metal ions coordination-driven one-step rapid self-assembly. The adjustable NA-Ag@Pt nanozyme is synthesized within 4 min using single-stranded nucleic acid as templates, and peroxidase-like enhancing FNA-Ag@Pt nanozyme is received by regulating functional nucleic acids (FNA) based on NA-Ag@Pt nanozyme. Both Ag@Pt nanozymes that are developed not only has simple and general synthesis approaches, but also can produce artificial precise adjustment and possess dual-functional. Moreover, when lead ion-specific aptamers as FNA are introduced to NA-Ag@Pt nanozyme, the Pb2+ aptasensor is successfully constructed by increasing electron conversion efficiency and improving the specificity of nanozyme. In addition, both nanozyme has good antibacterial properties, with ~100% and ~85% antibacterial efficiency against Escherichia coli and Staphylococcus aureus, respectively. This work provides a synthesis method of novelty dual-functional Ag@Pt nanozymes and successful application in metal ions detection and antibacterial agents.
Collapse
Affiliation(s)
- Zaihui Du
- Food Laboratory of Zhongyuan, and Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, and Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Pengfei Wang
- Food Laboratory of Zhongyuan, and Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinyue Lan
- Food Laboratory of Zhongyuan, and Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Shenghao Lin
- Food Laboratory of Zhongyuan, and Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, and Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
4
|
Tang Q, Shi L, Yang B, Liu W, Li B, Jin Y. A biomineralized bi-functional hybrid nanoflower to effectively combat bacteria via a glucose-powered cascade catalytic reaction. J Mater Chem B 2023; 11:3413-3421. [PMID: 36994587 DOI: 10.1039/d2tb02704f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bacterial resistance due to the abuse of conventional antibiotics is regarded as a major problem for bacterial-induced infections and chronic wound healing. There is an urgent need to explore alternative antimicrobial strategies and functional materials with excellent antibacterial efficacy. Herein, guanosine monophosphate (GMP) and glucose oxidase (GOD) were coordinated with copper ions to obtain a bi-functional hybrid nanoflower (Cu-GMP/GODNF) as a cascade catalyst for promoting antibacterial efficacy. Besides the efficient conversion of glucose to hydrogen peroxide, the produced gluconic acid by loading GOD can supply a compatible catalytic environment to substantially improve the peroxidase activity for generating more toxic reactive oxygen species (ROS). So, the glucose-powered cascade catalytic reaction effectively killed bacteria. Moreover, H2O2 self-supplied by glucose can reduce harmful side effects of exogenous H2O2. Meanwhile, the adhesion between the Cu-GMP/GODNF and the bacterial membrane can enhance the antibacterial efficacy. Therefore, the achieved bi-functional hybrid nanoflower exhibited high efficiency and biocompatibility for killing bacteria in diabetes-related infections.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Zhang X, Yi C, Zhang L, Zhu X, He Y, Lu H, Li Y, Tang Y, Zhao W, Chen G, Wang C, Huang S, Ouyang G, Yu D. Size-optimized nuclear-targeting phototherapy enhances the type I interferon response for "cold" tumor immunotherapy. Acta Biomater 2023; 159:338-352. [PMID: 36669551 DOI: 10.1016/j.actbio.2023.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
There is growing interest in the effect of innate immune silencing in "cold" tumors, which always fail in the immune checkpoint blockade monotherapy using PD-L1 monoclonal antibodies (aPD-L1). Combination of aPD-L1 with photodynamic therapy, i.e., photoimmunotherapy, is a promising strategy to improve the mono immunotherapy. Nuclear-targeting nanoparticles could elicit a type I interferon (IFN)-mediated innate immune response and reverse the immunosuppressive microenvironment for long-term immunotherapy of "cold" tumors. Photosensitizers such as zinc phthalocyanine (ZnPc) have limited ability to target the nucleus and activate innate sensing pathways to minimize tumor recurrence. Additionally, the relationship between nanoparticle size and nuclear entry capacity remains unclear. Herein, graphene quantum dots (GQDs) were employed as aPD-L1 and ZnPc carriers. Three particle sizes (200 nm, 32 nm and 5 nm) of aPD-L1/ZnPc/GQD-PEG (PZGE) were synthesized and tested. The 5 nm nanoparticles achieved the best nuclear enrichment capacity contributing to their ultrasmall size. Notably, 5 nm PZGE-based photodynamic therapy enabled an amplification of the type I IFN-mediated innate immune response and could convert "immune-cold" tumors into "immune-hot" ones. Utilizing their size advantage to target the nucleus, 5 nm nanoparticles induced DNA damage and activated the type I IFN-mediated innate immune response, subsequently promoting cytotoxic T-lymphocyte infiltration and reversing negative PD-L1 expression. Furthermore, the nanoplatform we designed is promising for the effective suppression of distant oral squamous cell carcinoma. Thus, for the first time, this study presents a size design strategy for nuclear-targeted photo-controlled immune adjuvants and the nuclear-targeted phototherapy-mediated immunomodulatory functions of type I IFN innate immune signalling for "immune-cold" tumors. STATEMENT OF SIGNIFICANCE: The potential of commonly used photosensitizers to activate innate sensing pathways for producing type I IFNs is limited due to the lack of nuclear targeting. Facilitating the nuclear-targeting of photosensitizers to enhance innate immune response and execute long-term tumor killing effect would be a promising strategy for "cold" tumor photoimmunotherapy. Herein, we report an optimal size of PZGE nanoparticles that enable the nuclear-targeting of ZnPc, which reinforces the type I IFN-mediated innate immune response, synergistically reversing "cold tumors" to "hot tumors" for effective primary and distant tumor photoimmunotherapy. This work highlights the marked efficacy of ultrasmall nuclear-located nanocarriers and offers new insight into "immune-cold tumors" via prominent innate immune activation mediated by nuclear-targeting photoimmunotherapy.
Collapse
Affiliation(s)
- Xiliu Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Chen Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Lejia Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Xinyu Zhu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Yi He
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Huanzi Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Yiming Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Yuquan Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Wei Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China.
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
6
|
Zhang Y, Hu H, Deng X, Song Q, Xing X, Liu W, Zhang Y. Cascade-Enhanced Catalytic Nanocomposite with Glutathione Depletion and Respiration Inhibition for Effective Starving-Chemodynamic Therapy Against Hypoxic Tumor. Int J Nanomedicine 2022; 17:5491-5510. [DOI: 10.2147/ijn.s382750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022] Open
|
7
|
Dong C, Dai X, Wang X, Lu Q, Chen L, Song X, Ding L, Huang H, Feng W, Chen Y, Chang M. A Calcium Fluoride Nanozyme for Ultrasound-Amplified and Ca 2+ -Overload-Enhanced Catalytic Tumor Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205680. [PMID: 36106691 DOI: 10.1002/adma.202205680] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The anticancer mechanism of nanozymes is dominantly associated with the capacity for generation of reactive oxygen species (ROS) caused by the valence change of metal elements. However, very little research is focused on and has achieved the exploration and development of enzyme-mimicking activities of valence-invariable metal compounds. Herein, a distinct valence-invariable calcium fluoride (CaF2 ) nanozyme with ultrasound (US)-enhanced peroxidase (POD)-mimicking activity is rationally designed and engineered for efficient calcium (Ca2+ )-overload-enhanced catalytic tumor nanotherapy, which is the first paradigm of Ca-based nanozymes for catalytic cancer treatment. The release of exogenous Ca2+ ions from CaF2 nanocrystals and deleterious ROS generation derived from US-amplified POD-mimicking properties facilitate intracellular Ca2+ accumulation and achieve Ca2+ -overload-induced mitochondrial dysfunction through introducing exogenous Ca2+ ions and regulating calcium-pumping channels of neoplastic cells. Especially, US as an exogenous energy input is capable of substantially amplifying POD-mimicking catalytic activities of CaF2 nanozyme, ultimately achieving efficient anti-neoplastic outcome on both 4T1 breast tumor and H22 hepatic carcinoma animal models. Such a discovery of enzyme-like activity of valence-invariable metal compounds can broaden the cognition scope of nanozymes and effectively serves the field of catalytic and chemoreactive nanomedicine.
Collapse
Affiliation(s)
- Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xi Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Qing Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinran Song
- Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, P. R. China
| | - Li Ding
- Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, P. R. China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| |
Collapse
|
8
|
Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022; 17:2707-2731. [PMID: 35747168 PMCID: PMC9213040 DOI: 10.2147/ijn.s364840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Ordinarily, cancer cells possess features of abnormally increased nutrient intake and metabolic pathways. The disorder of glucose metabolism is the most important among them. Therefore, starvation therapy targeting glucose metabolism specifically, which results in metabolic disorders, restricted synthesis, and inhibition of tumor growth, has been developed for cancer therapy. However, issues such as inadequate targeting effectiveness and drug tolerance impede their clinical transformation. In recent years, nanomaterial-assisted starvation treatment has made significant progress in addressing these challenges, whether as a monotherapy or in combination with other medications. Herein, representative researches on the construction of nanosystems conducting starvation therapy are introduced. Elaborate designs and interactions between different treatment mechanisms are meticulously mentioned. Not only are traditional treatments based on glucose oxidase involved, but also newly sprung small molecule agents targeting glucose metabolism. The obstacles and potential for advancing these anticancer therapies were also highlighted in this review.
Collapse
Affiliation(s)
- Zhiyan Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xianghui Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shichao Ai
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Song Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
9
|
Hu Y, Wang K, Ye C. "Four-in-One" Nanozyme and Natural Enzyme Symbiotic System of Cu 2-x Se-GOx for Cervical Cancer Therapy. Chemistry 2021; 28:e202102885. [PMID: 34773414 DOI: 10.1002/chem.202102885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 12/19/2022]
Abstract
Cervical cancer, as a common malignant tumor of the reproductive system, seriously threatens women's life and health, and is difficult to be cured by traditional treatments, such as surgery, chemotherapy and radiotherapy. Fortunately, tumor microenvironment (TME)-activated catalytic therapy with high efficiency and reduced off-target toxicity has emerged as a novel treatment model. Herein, we designed a "four-in-one" nanozyme and natural enzyme symbiotic system of Cu2-x Se-GOx for TME-triggered cascaded catalytic enhanced cancer treatment. In response to unique TME, Cu2-x Se with catalase activity could effectively catalyze over-expressed H2 O2 in cancer cells into O2 . Subsequently, the glucose oxidase (GOx) could deplete intracellular glucose with the assistance of O2 ; this not only achieves starvation therapy, but also regenerates H2 O2 to boost the generation of highly cytotoxic . OH due to the peroxidase activity of Cu2-x Se. Moreover, although the free-radical scavenger glutathione (GSH) is overexpressed in tumor cells, Cu2-x Se with glutathione oxidase activity could effectively consume GSH for enhanced ROS production. Thus, the "four-in-one" nanozyme@natural enzyme symbiotic system of Cu2-x Se-GOx could induce significant ROS accumulation at the tumor regions, thus providing a potential approach for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University Changchun, Jilin, 130000, P. R. China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University Changchun, Jilin, 130000, P. R. China
| | - Cong Ye
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University Changchun, Jilin, 130000, P. R. China
| |
Collapse
|