1
|
Liu J, Xu Y, Duan R, Zhang M, Hu Y, Chen M, Han B, Dong J, Lee C, Kumara LSR, Seo O, Tseng J, Watanabe T, Liu Z, Zhu Q, Xu J, Ng MF, Wu D, Yan Q. Reaction-driven formation of anisotropic strains in FeTeSe nanosheets boosts low-concentration nitrate reduction to ammonia. Nat Commun 2025; 16:3595. [PMID: 40234408 PMCID: PMC12000605 DOI: 10.1038/s41467-025-58940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
FeM (M = Se, Te) chalcogenides have been well studied as promising magnets and superconductors, yet their potential as electrocatalysts is often considered limited due to anion dissolution and oxidation during electrochemical reactions. Here, we show that by using two-dimensional (2D) FeTeSe nanosheets, these conventionally perceived limitations can be leveraged to enable the reaction-driven in-situ generation of anisotropic in-plane tensile and out-of-plane compressive strains during the alkaline low-concentration nitrate reduction reaction (NO3-RR). The reconstructed catalyst demonstrates enhanced performance, yielding ammonia with a near-unity Faradaic efficiency and a high yield rate of 42.14 ± 2.06 mg h-1 mgcat-1. A series of operando synchrotron-based X-ray measurements and ex-situ characterizations, alongside theoretical calculations, reveal that strain formation is ascribed to chalcogen vacancies created by partial Se/Te leaching, which facilitate the adsorption and dissociation of OH-/NO3- from the electrolyte, resulting in an O(H)-doped strained lattice. Combined electrochemical and computational investigations suggest that the superior catalytic performance arises from the synergistic contributions from the exposed strained Fe sites and surface hydroxyl groups. These findings highlight the potential of 2D transition metal chalcogenides for in-situ structural engineering during electrochemical reactions to enhance catalytic activity for NO3-RR and beyond.
Collapse
Affiliation(s)
- Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Yifan Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yue Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Mengxin Chen
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Bo Han
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Jinfeng Dong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | | | - Okkyun Seo
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Jochi Tseng
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takeshi Watanabe
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Man-Fai Ng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore, 138632, Republic of Singapore.
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
| |
Collapse
|
2
|
Yi C, Li Z, Li Q, Li B, Zhang H, He K, Zhang L, Zhang Z, Feng Y, Liu Y, Liu M, Wang D, Li S, Tang J, Gao P, Zhu M, Wang Y, Wu R, Li J, Liu X, Chen S, Ma C, Liu Y, Wei Z, Liao L, Li B, Duan X. Ultrahigh Exchange Bias Field/Coercive Field Ratio in In Situ Formed Two-Dimensional Magnetic Te-Cr 2O 3/Cr 5Te 6 Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2410816. [PMID: 39865984 DOI: 10.1002/adma.202410816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/05/2025] [Indexed: 01/28/2025]
Abstract
The exchange bias (EB) effect is a fundamental magnetic phenomenon, in which the exchange bias field/coercive field ratio (|HEB/HC|) can improve the stability of spintronic devices. Two-dimensional (2D) magnetic heterostructures have the potential to construct low-power and high-density spintronic devices, while their typically air unstable and |HEB/HC| lesser, limiting the possibility of applications. Here, 2D Cr5Te6 nanosheets have been systematically synthesized with an in situ formed ≈2 nm-thick Te doped Cr2O3 layer (Te-Cr2O3) on the upper surface by chemical vapor deposition (CVD) method. The strong and air stable EB effect, achieving a |HEB/HC| of up to 80% under an ultralow cooling field of 0.01 T, which is greater than that of the reported 2D magnetic heterostructures. Meanwhile, the uniformity of thickness and chemical composition of the Te-Cr2O3 layer can be controlled by the growth conditions which are highly correlated with the EB effect of 2D Te-Cr2O3/Cr5Te6 heterostructures. First-principles calculations show that the Te-Cr2O3 can provide uncompensated spins in the Cr2O3, thus forming strong spin pinning effect. The systematical investigation of the EB effect in 2D Te-Cr2O3/Cr5Te6 heterostructures with high |HEB/HC| will open up exciting opportunities in low-power and high-stability 2D spintronic devices.
Collapse
Affiliation(s)
- Chen Yi
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zhou Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Qiuqiu Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Bailing Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hongmei Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Kun He
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Liqiang Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Zucheng Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ya Feng
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Yingying Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Miaomiao Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Di Wang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Shanhao Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jingmei Tang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Peng Gao
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Manli Zhu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Yanru Wang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ruixia Wu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Xingqiang Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Shulin Chen
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yuan Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Liao
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Bo Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
3
|
Xu W, Jiang J, Chen Y, Tang N, Jiang C, Yang S. Single-crystalline High-κ GdOCl dielectric for two-dimensional field-effect transistors. Nat Commun 2024; 15:9469. [PMID: 39488517 PMCID: PMC11531513 DOI: 10.1038/s41467-024-53907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Two-dimensional (2D) dielectrics, integrated with high-mobility semiconductors, show great promise to overcome the scaling limits in miniaturized integrated circuits. However, the 2D dielectrics explored to date still face the challenges of low crystallinity, diminished dielectric constant, and the lack of effective synthesis methods. Here, we report the controllable synthesis of ultra-thin gadolinium oxychloride (GdOCl) nanosheets via a chloride hydrate-assisted chemical vapor deposition (CVD) method. The resultant GdOCl nanosheets display good dielectric properties, including a high dielectric constant (high-κ) of 15.3, robust breakdown field strengths (Ebd) exceeding 9.9 MV/cm, and minimal gate leakage currents of approximately 10-6 A/cm2. The top-gated GdOCl/MoS2 field-effect transistors (FETs) exhibit commendable switch characteristics, a negligible hysteresis of ~5 mV and a subthreshold swing down to 67.9 mV dec-1. The GdOCl/MoS2 FETs can also be employed to construct functional logic gates. Our study underscores the significant potential of the 2D GdOCl dielectric for innovative high-speed operated nanoelectronic devices.
Collapse
Affiliation(s)
- Weiting Xu
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China
| | - Jiayang Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yujia Chen
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China
| | - Ning Tang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Chengbao Jiang
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China
| | - Shengxue Yang
- School of Materials Science and Engineering, Beihang University Beijing, Beijing, P. R. China.
| |
Collapse
|
4
|
Yang CK, Jiao L. Superconducting Two-Dimensional FeSe Grown on the Fe-Enriched Interface. ACS NANO 2024; 18:12276-12283. [PMID: 38700494 DOI: 10.1021/acsnano.4c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Two-dimensional (2D) tetragonal FeSe has sparked extensive research interest owing to its tunable superconductivity, providing valuable insights into the design of high-temperature superconductors. Currently, the intricate Fe-Se phase diagram poses a challenge to the controlled synthesis of superconducting 2D FeSe in a pure tetragonal phase. Here, we exploit the ion-exchange property of fluorophlogopite mica to devise a straightforward approach for the phase-controlled synthesis of tetragonal FeSe on an Fe-enriched mica surface within a molten salt environment. This method successfully produces highly crystalline FeSe in a pure tetragonal phase with adjustable thickness. We investigated the surface composition of the postgrowth mica substrate using various microscopic and spectroscopic characterizations to highlight the importance of the Fe-enriched growth interface in the phase-selective synthesis of 2D tetragonal FeSe. The obtained 2D FeSe exhibited 2D superconductivity, comparable to that of FeSe mechanically exfoliated from bulk crystals, confirming the high quality of our samples. Beyond tetragonal FeSe, 2D antiferromagnetic FeTe and superconducting FeSxSeyTe1-x-y have been phase-selectively synthesized via this approach. Our study elucidates the significance of the growth interface on the phase-selective synthesis of 2D materials and presents potential opportunities for the phase-controlled synthesis of 2D multiphase materials via the rational design of the growth interface.
Collapse
Affiliation(s)
- Chen-Kai Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liying Jiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
6
|
Wang B, Yao Y, Hong W, Hong Z, He X, Wang T, Jian C, Ju Q, Cai Q, Sun Z, Liu W. The Controllable Synthesis of High-Quality Two-Dimensional Iron Sulfide with Specific Phases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207325. [PMID: 36919484 DOI: 10.1002/smll.202207325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/20/2023] [Indexed: 06/08/2023]
Abstract
2D Fe-chalcogenides have drawn significant attention due to their unique structural phases and distinct properties in exploring magnetism and superconductivity. However, it remains a significant challenge to synthesize 2D Fe-chalcogenides with specific phases in a controllable manner since Fe-chalcogenides have multiple phases. Herein, a molecular sieve-assisted strategy is reported for synthesizing ultrathin 2D iron sulfide on substrates via the chemical vapor deposition method. Using a molecular sieve and tuning growth temperatures to control the partial pressures of precursor concentrations, hexagonal FeS, tetragonal FeS, and non-stoichiometric Fe7 S8 nanoflakes can be precisely synthesized. The 2D h-FeS, t-FeS, and Fe7 S8 have high conductivities of 5.4 × 105 S m-1 , 5.8 × 105 S m-1 , and 1.9 × 106 S m-1 . 2D tetragonal FeS shows a superconducting transition at 4 K. The spin reorientation at ≈30 K on the non-stoichiometric Fe7 S8 nanoflakes with ferrimagnetism up to room temperature has also been observed. The controllable synthesis of various phases of 2D iron sulfide may provide a route for synthesizing other 2D compounds with various phases.
Collapse
Affiliation(s)
- Bicheng Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yu Yao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Wenting Hong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhaoan Hong
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Xu He
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Taiku Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Chuanyong Jian
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qiankun Ju
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qian Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhihua Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Wei Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
7
|
Li B, Zhang H, Tao Q, Shen X, Huang Z, He K, Yi C, Li X, Zhang L, Zhang Z, Liu J, Tang J, Zhou Y, Wang D, Yang X, Zhao B, Wu R, Li J, Li B, Duan X. Thickness-Dependent Topological Hall Effect in 2D Cr 5 Si 3 Nanosheets with Noncollinear Magnetic Phase. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210755. [PMID: 36719342 DOI: 10.1002/adma.202210755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Antiferromagnets with noncollinear spin order are expected to exhibit unconventional electromagnetic response, such as spin Hall effects, chiral abnormal, quantum Hall effect, and topological Hall effect. Here, 2D thickness-controlled and high-quality Cr5 Si3 nanosheets that are compatible with the complementary metal-oxide-semiconductor technology are synthesized by chemical vapor deposition method. The angular dependence of electromagnetic transport properties of Cr5 Si3 nanosheets is investigated using a physical property measurement system, and an obvious topological Hall effect (THE) appears at a large tilted magnetic field, which results from the noncollinear magnetic structure of the Cr5 Si3 nanosheet. The Cr5 Si3 nanosheets exhibit distinct thickness-dependent perpendicular magnetic anisotropy (PMA), and the THE only emerges in the specific thickness range with moderate PMA. This work provides opportunities for exploring fundamental spin-related physical mechanisms of noncollinear antiferromagnet in ultrathin limit.
Collapse
Affiliation(s)
- Bailing Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Quanyang Tao
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohua Shen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ziwei Huang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Kun He
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, P. R. China
| | - Chen Yi
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, P. R. China
| | - Xu Li
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Liqiang Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zucheng Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jialing Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jingmei Tang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yucheng Zhou
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Di Wang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Bei Zhao
- School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Ruixia Wu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bo Li
- Advanced Semiconductor Technology and Application Engineering Research Center of Ministry of Education of China, Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, P. R. China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
8
|
Zhao Z, Zhou J, Liu L, Liu N, Huang J, Zhang B, Li W, Zeng Y, Zhang T, Ji W, Yang T, Zhang Z, Li S, Hou Y. Two-Dimensional Room-Temperature Magnetic Nonstoichiometric Fe 7Se 8 Nanocrystals: Controllable Synthesis and Magnetic Behavior. NANO LETTERS 2022; 22:1242-1250. [PMID: 35061398 DOI: 10.1021/acs.nanolett.1c04403] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) magnetic materials have attracted significant attention for promising applications in energy-saving logic and robust memory devices. However, most 2D magnets discovered so far typically feature drawbacks for practical applications due to low critical temperatures. Herein, we synthesize ultrathin room-temperature (RT) magnetic Fe7Se8 nanoflakes via the space-confined chemical vapor deposition method. It is found that the appropriate supply and control of Se concentration in the reaction chamber is crucial for synthesizing high-quality nonstoichiometric Fe7Se8 nanoflakes. Cryogenic electrical and magnetic characterizations reveal the emergence of spin reorientation at ∼130 K and the survival of long-range magnetic ordering up to room temperature. The RT magnetic domain structures with different thicknesses are also uncovered by magnetic force microscopy. Moreover, theoretical calculations confirm the spin configuration and metallic band structure. The outstanding characteristics exhibited by Fe7Se8 nanoflakes, including RT magnetism, spin reorientation property, and good electrical conductivity, make them a potential candidate for RT spintronics.
Collapse
Affiliation(s)
- Zijing Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian Zhou
- National Laboratory of Solid-State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Luhao Liu
- National Laboratory of Solid-State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Nanshu Liu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Jianqi Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Biao Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Wei Li
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Yi Zeng
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Teng Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Teng Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Songlin Li
- National Laboratory of Solid-State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Cheng M, Zhao X, Zeng Y, Wang P, Wang Y, Wang T, Pennycook SJ, He J, Shi J. Phase-Tunable Synthesis and Etching-Free Transfer of Two-Dimensional Magnetic FeTe. ACS NANO 2021; 15:19089-19097. [PMID: 34697943 DOI: 10.1021/acsnano.1c05738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) Fe-chalcogenides (e.g., FeS, FeSe, and FeTe, etc.) have sparked extensive interest due to their rich phase diagrams including superconductivity, magnetism, and topological state, as well as versatile applications in electronic devices and energy related fields. However, the phase-tunable synthesis and green transfer of such fascinating materials still remain challenging. Herein, we develop a temperature-mediated chemical vapor deposition (CVD) approach to grow ultrathin nonlayered hexagonal and layered tetragonal FeTe nanosheets on mica substrates, with their thicknesses down to ∼2.3 and ∼4.0 nm, respectively. Interestingly, we have observed exciting ferromagnetism with the Curie temperature approaching ∼300 K and high conductivity (∼1.96 × 105 S m-1) in 2D hexagonal FeTe. More significantly, we have designed a swift, high-efficiency, and etching-free method for the transfer of 2D FeTe nanosheets onto arbitrary substrates, and such a transfer strategy enables the cyclic utilization of growth substrates. These results should propel the further development of phase-tunable synthesis and green transfer of 2D Fe-chalcogenides, as well as their potential applications in spintronic devices.
Collapse
Affiliation(s)
- Mo Cheng
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yan Zeng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Peng Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuzhu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ti Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Stephen John Pennycook
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|