1
|
Feng D, Zhu Z, Li D, Li M. Progress in understanding triple ionic-electronic conduction in perovskite oxides for protonic ceramic fuel cell applications. NANOSCALE 2025; 17:11133-11151. [PMID: 40260477 DOI: 10.1039/d4nr05513f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Protonic ceramic fuel cells offer a promising route to effectively generate electricity from various fuels at reduced temperatures. However, the viability of this technology is impeded by the sluggish kinetics of the oxygen reduction reaction at the cathode. Recently, triple ionic-electronic conductors have shown their promise as cathode materials with improved catalytic activity because of their enhanced mixed electron and ionic conductivities that can maximise the active sites for the reaction. This review examines the transport mechanism of holes, oxygen ions, and protons within triple ionic-electronic conductors. This review highlights the equilibrium among these charge carriers and their requirement for specific cationic environments to facilitate rapid transport. As a result, triple ionic-electronic conductors need to balance the transport of these charges to realise optimum oxygen reduction reaction activity. The review further identifies the transport of oxygen ions or protons as the current limiting factor in triple ionic-electronic conductors. This review concludes by emphasizing the importance of understanding the role of ionic transport in the oxygen reduction reaction to enhance the performance of triple ionic-electronic conductors.
Collapse
Affiliation(s)
- Desheng Feng
- Department of Chemical Engineering, the University of Melbourne, Melbourne, 3010, Australia.
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| | - Dan Li
- Department of Chemical Engineering, the University of Melbourne, Melbourne, 3010, Australia.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mengran Li
- Department of Chemical Engineering, the University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
2
|
Bartoletti A, Mercadelli E, Gondolini A, Sanson A. Exploring the Potential of Cold Sintering for Proton-Conducting Ceramics: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5116. [PMID: 39459822 PMCID: PMC11509840 DOI: 10.3390/ma17205116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Proton-conducting ceramic materials have emerged as effective candidates for improving the performance of solid oxide cells (SOCs) and electrolyzers (SOEs) at intermediate temperatures. BaCeO3 and BaZrO3 perovskites doped with rare-earth elements such as Y2O3 (BCZY) are well known for their high proton conductivity, low operating temperature, and chemical stability, which lead to SOCs' improved performance. However, the high sintering temperature and extended processing time needed to obtain dense BCZY-type electrolytes (typically > 1350 °C) to be used as SOC electrolytes can cause severe barium evaporation, altering the stoichiometry of the system and consequently reducing the performance of the final device. The cold sintering process (CSP) is a novel sintering technique that allows a drastic reduction in the sintering temperature needed to obtain dense ceramics. Using the CSP, materials can be sintered in a short time using an appropriate amount of a liquid phase at temperatures < 300 °C under a few hundred MPa of uniaxial pressure. For these reasons, cold sintering is considered one of the most promising ways to obtain ceramic proton conductors in mild conditions. This review aims to collect novel insights into the application of the CSP with a focus on BCZY-type materials, highlighting the opportunities and challenges and giving a vision of future trends and perspectives.
Collapse
Affiliation(s)
- Andrea Bartoletti
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) of the National Research Council (CNR), Via Granarolo 64, I-48018 Faenza, RA, Italy; (A.G.); (A.S.)
| | - Elisa Mercadelli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC) of the National Research Council (CNR), Via Granarolo 64, I-48018 Faenza, RA, Italy; (A.G.); (A.S.)
| | | | | |
Collapse
|
3
|
Choi Y, Han S, Park BI, Xu Z, Huang Q, Bae S, Kim JS, Kim SO, Meng Y, Kim SI, Moon JY, Roh I, Park JW, Bae SH. Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics. NANO CONVERGENCE 2024; 11:36. [PMID: 39249580 PMCID: PMC11383915 DOI: 10.1186/s40580-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
The oxide and halide perovskite materials with a ABX3 structure exhibit a number of excellent properties, including a high dielectric constant, electrochemical properties, a wide band gap, and a large absorption coefficient. These properties have led to a range of applications, including renewable energy and optoelectronics, where high-performance catalysts are needed. However, it is difficult for a single structure of perovskite alone to simultaneously fulfill the diverse needs of multiple applications, such as high performance and good stability at the same time. Consequently, perovskite nanocomposites have been developed to address the current limitations and enhance their functionality by combining perovskite with two or more materials to create complementary materials. This review paper categorizes perovskite nanocomposites according to their structural composition and outlines their synthesis methodologies, as well as their applications in various fields. These include fuel cells, electrochemical water splitting, CO2 mitigation, supercapacitors, and optoelectronic devices. Additionally, the review presents a summary of their research status, practical challenges, and future prospects in the fields of renewable energy and electronics.
Collapse
Affiliation(s)
- Yunseok Choi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhihao Xu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Qingge Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sanggeun Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Justin S Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Sun Ok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Seung-Il Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ilpyo Roh
- R&D CENTER, M.O.P Co., Ltd, Seoul, 07281, South Korea
| | - Ji-Won Park
- R&D Center of JB Lab Corporation, Gwanak-Gu, Seoul, 08788, Republic of Korea.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
4
|
Ye Q, Ye H, Ma Z, Lin H, Zhao B, Yang G, Dong F, Ni M, Lin Z, Zhang S. Facile Deficiency Engineering in a Cobalt-Free Perovskite Air Electrode to Achieve Enhanced Performance for Protonic Ceramic Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307900. [PMID: 38334199 DOI: 10.1002/smll.202307900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/23/2023] [Indexed: 02/10/2024]
Abstract
As a crucial component responsible for the oxygen reduction reaction (ORR), cobalt-rich perovskite-type cathode materials have been extensively investigated in protonic ceramic fuel cell (PCFC). However, their widespread application at a commercial scale is considerably hindered by the high cost and inadequate stability. In response to these weaknesses, the study presents a novel cobalt-free perovskite oxide, Ba0.95La0.05(Fe0.8Zn0.2)0.95O3-δ (BLFZ0.95), with the triple-conducting (H+|O2-|e-) property as an active and robust air electrode for PCFC. The B-site deficiency state contributes significantly to the optimization of crystal and electronic structure, as well as the increase in oxygen vacancy concentration, thus in turn favoring the catalytic capacity. As a result, the as-obtained BLFZ0.95 electrode demonstrates exceptional electrochemical performance at 700 °C, representing extremely low area-specific resistance of 0.04 Ω cm2 in humid air (3 vol.% H2O), extraordinarily high peak power density of 1114 mW cm-2, and improved resistance against CO2 poisoning. Furthermore, the outstanding long-term durability is achieved without visible deterioration in both symmetrical and single cell modes. This study presents a simple but crucial case for rational design of cobalt-free perovskite cathode materials with appreciable performance via B-site deficiency regulation.
Collapse
Affiliation(s)
- Qirui Ye
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Huaqing Ye
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Zilin Ma
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Haoqing Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Bote Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Feifei Dong
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, P. R. China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhan Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, P. R. China
| | - Shanqing Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, P. R. China
| |
Collapse
|
5
|
Liu Z, Bai Y, Sun H, Guan D, Li W, Huang WH, Pao CW, Hu Z, Yang G, Zhu Y, Ran R, Zhou W, Shao Z. Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells. Nat Commun 2024; 15:472. [PMID: 38212300 PMCID: PMC10784466 DOI: 10.1038/s41467-024-44767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Reversible proton ceramic electrochemical cells are promising solid-state ion devices for efficient power generation and energy storage, but necessitate effective air electrodes to accelerate the commercial application. Here, we construct a triple-conducting hybrid electrode through a stoichiometry tuning strategy, composed of a cubic phase Ba0.5Sr0.5Co0.8Fe0.2O3-δ and a hexagonal phase Ba4Sr4(Co0.8Fe0.2)4O16-δ. Unlike the common method of creating self-assembled hybrids by breaking through material tolerance limits, the strategy of adjusting the stoichiometric ratio of the A-site/B-site not only achieves strong interactions between hybrid phases, but also can efficiently modifies the phase contents. When operate as an air electrode for reversible proton ceramic electrochemical cell, the hybrid electrode with unique dual-phase synergy shows excellent electrochemical performance with a current density of 3.73 A cm-2 @ 1.3 V in electrolysis mode and a peak power density of 1.99 W cm-2 in fuel cell mode at 650 °C.
Collapse
Affiliation(s)
- Zuoqing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Yuesheng Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Daqin Guan
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, China
| | - Wenhuai Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China.
| | - Yinlong Zhu
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, People's Republic of China.
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, People's Republic of China.
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
6
|
Abstract
Although they are emerging technologies for achieving high-efficiency and green and eco-friendly energy conversion, ceramic electrochemical cells (CECs), i.e. solid oxide electrolysis cells (SOECs) and fuel cells (SOFCs), are still fundamentally limited by their inferior catalytic activities at low temperature, poor thermo-mechanical stability, high material cost, etc. The materials used in electrolytes and electrodes, which are the most important components in CECs, are highly associated with the cell performances. Therefore, rational design of electrolytes and electrodes with excellent catalytic activities and high stabilities at relatively low cost is a meaningful and valuable approach for the development of CECs. Nanotechnology is a powerful tool for improving the material performances in CECs owing to the favourable effects induced by the nanocrystallization of electrolytes and electrodes. Herein, a relatively comprehensive review on the nanotechnologies implemented in CECs is conducted. The working principles of CECs and the corresponding challenges were first presented, followed by the comprehensive insights into the working mechanisms of nanocrystalline materials in CECs. Then, systematic summarization and analyses of the commonly used nano-engineering strategies in the fabrication of CEC materials, including physical and chemical methods, were provided. In addition, the frontiers in the research of advanced electrolyte and electrode materials were discussed with a special emphasis on the modified electrochemical properties derived from nanotechnologies. Finally, the bottlenecks and the promising breakthroughs in nanotechnologies were highlighted in the direction of providing useful references for rational design of nanomaterials for CECs.
Collapse
Affiliation(s)
- Jiafeng Cao
- School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243032, Anhui, China.
| | - Yuexia Ji
- School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243032, Anhui, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
7
|
Deng Y, Du J, Zhu Y, Zhao L, Wang H, Gong Y, Jin J, He B, Wang R. Interface engineering of Ruddlesden-Popper perovskite/CeO 2/carbon heterojunction for rechargeable zinc-air batteries. J Colloid Interface Sci 2024; 653:1775-1784. [PMID: 37838547 DOI: 10.1016/j.jcis.2023.09.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
The development of noble metal-based bifunctional electrocatalysts is the key to driving the sluggish oxygen reduction/evolution reaction (ORR/OER) for rechargeable zinc-air battery applications. There is an urgent need to design and construct robust and cost-efficient bifunctional electrocatalysts. Herein, an interface engineering strategy of Ruddlesden-Popper (RP) perovskite/CeO2/carbon heterojunction with core-shell nanostructures is described. Ce-based metal-organic framework derived CeO2-C nanosheets are decorated on the surface of RP type perovskite Pr3Sr(Ni0.5Co0.5)3O10-δ (PSNC) nanofibers. Benefiting from the favorable conductivity, abundant oxygen vacancies and strong interfacial coupling, the hierarchical CeO2-C/PSNC electrode delivers a half-wave potential of 0.78 V (ORR), and an OER overpotential of 370 mV at 10 mA cm-2, respectively. A liquid rechargeable zinc-air battery (ZAB) assembled with CeO2-C/PSNC electrocatalysts as the air cathode exhibits a peak power density of 161 mW cm-2 and a long-term cycling life over 219 h. In addition, the CeO2-C/PSNC-based all-solid-state cable-type ZAB provides a high open-circuit voltage (∼1.44 V), good flexibility and durability. Our study opens a new insight into the design of efficient electrocatalysts for rechargeable ZABs by constructing hierarchical heterojunctions.
Collapse
Affiliation(s)
- Yanzhu Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Juwei Du
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yan Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou 311305, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057, China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou 311305, China
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518057, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou 311305, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
8
|
Tong X, Li C, Xu K, Wang N, Brodersen K, Yang Z, Chen M. Nanoengineering of electrodes via infiltration: an opportunity for developing large-area solid oxide fuel cells with high power density. NANOSCALE 2023; 15:16362-16370. [PMID: 37788013 DOI: 10.1039/d3nr02704j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Although nanoengineering of electrodes opens up the way to the development of solid oxide fuel cells (SOFCs) with improved performance, the practical implementation of such advances in cells suitable for widespread use remains a challenge. Here, the demonstration of large-area, commercially relevant SOFCs with two nanoengineered electrodes that display excellent performance is reported. The self-assembled nanocomposite La0.6Sr0.4CoO3-δ and Co3O4 is strategically designed and deposited into the well-interconnected Ce0.9Gd0.1O2-δ backbone as a cathode to enable an ultra-large electrochemically active region. The nanometer-scale Ce0.8Gd0.2O2-δ is deposited into a conventional Ni/yttria-stabilized zirconia (YSZ) anode to provide more active oxygen exchange kinetics and electronic conductivity compared to YSZ. The resulting nanoengineered cell with an effective size of 4 cm × 4 cm delivers a remarkable power output of 19.2 W per single cell at 0.6 V and 750 °C. These advancements have potential to facilitate the future development of high-performance SOFCs at a large scale by nanoengineering of electrodes and are expected to pave the way for the commercialization of this technology.
Collapse
Affiliation(s)
- Xiaofeng Tong
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China.
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| | - Chen Li
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Kaikuo Xu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Ningling Wang
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Karen Brodersen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| | - Zhibin Yang
- Research Center of Solid Oxide Fuel Cell, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Ming Chen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
9
|
Han L, Zhang J, Zou M, Tong JJ. Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204784. [PMID: 36300911 DOI: 10.1002/smll.202204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.
Collapse
Affiliation(s)
- Liang Han
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jiawei Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Minda Zou
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jianhua Joshua Tong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
10
|
Shi H, Hu Y, Feng Z, Qu J, Yu Y, Zhang D, Tan W. Solid‐state synthesis of BaCe
0.16
Y
0.04
Fe
0.8
O
3‐δ
cathode for protonic ceramic fuel cells. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huangang Shi
- School of Environmental Engineering Nanjing Institute of Technology Nanjing China
| | - Ying Hu
- School of Environmental Engineering Nanjing Institute of Technology Nanjing China
| | - Zixuan Feng
- School of Environmental Engineering Nanjing Institute of Technology Nanjing China
| | - Jifa Qu
- School of Environmental Engineering Nanjing Institute of Technology Nanjing China
| | - Yang Yu
- School of Environmental Engineering Nanjing Institute of Technology Nanjing China
| | - Dongping Zhang
- School of Environmental Engineering Nanjing Institute of Technology Nanjing China
| | - Wenyi Tan
- School of Environmental Engineering Nanjing Institute of Technology Nanjing China
| |
Collapse
|
11
|
Ji Y, Feng C, Shao S, Li X, Huang X, Cao J. An electrochemical assessment of pristine SrCoO
3‐δ
using the distribution of relaxation times analysis. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuexia Ji
- Institute of Materials Science and Engineering & School of Science and Engineering of Mathematics and Physics Anhui University of Technology Maanshan Anhui Province China
| | - Chuanshuai Feng
- Institute of Materials Science and Engineering & School of Science and Engineering of Mathematics and Physics Anhui University of Technology Maanshan Anhui Province China
| | - Shande Shao
- Institute of Materials Science and Engineering & School of Science and Engineering of Mathematics and Physics Anhui University of Technology Maanshan Anhui Province China
| | - Xinran Li
- Institute of Materials Science and Engineering & School of Science and Engineering of Mathematics and Physics Anhui University of Technology Maanshan Anhui Province China
| | - Xianshan Huang
- Institute of Materials Science and Engineering & School of Science and Engineering of Mathematics and Physics Anhui University of Technology Maanshan Anhui Province China
| | - Jiafeng Cao
- Institute of Materials Science and Engineering & School of Science and Engineering of Mathematics and Physics Anhui University of Technology Maanshan Anhui Province China
| |
Collapse
|
12
|
Qiu H, Jiang S, Niu Y, Zhang Q, Pang Y, Su C. Thickness‐dependent high‐performance solid oxide fuel cells with Ba
0.5
Sr
0.5
Co
0.8
Fe
0.2
O
3‐δ
cathode. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hao Qiu
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang China
| | - Shanshan Jiang
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang China
| | - Yingjie Niu
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang China
| | - Qi Zhang
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang China
| | - Yingping Pang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material Shandong University Jinan China
| | - Chao Su
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang China
| |
Collapse
|