1
|
Zheng Y, Chen F, Frank S, Quispe Haro JJ, Wegner SV. Three-Color Protein Photolithography with Green, Red, and Far-Red Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405687. [PMID: 39422040 DOI: 10.1002/smll.202405687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Protein photolithography is an invaluable tool for generating protein microchips and regulating interactions between cells and materials. However, the absence of light-responsive molecules that allow for the copatterning of multiple functional proteins with biocompatible visible light poses a significant challenge. Here, a new approach for photopatterning three distinct proteins on a single surface by using green, red, and far-red light is reported. The cofactor of the green light-sensitive protein CarH is engineered such that it also becomes sensitive to red and far-red light. These new cofactors are shown to be compatible with two CarH-based optogenetic tools to regulate bacterial cell-cell adhesions and gene expression in mammalian cells with red and far-red light. Further, by incorporating different CarH variants with varying light sensitivities in layer-by-layer (LbL) multiprotein films, specific layers within the films, along with other protein layers on top are precisely removed by using different colors of light, all with high spatiotemporal accuracy. Notably, with these three distinct colors of visible light, it is possible to incorporate diverse proteins under mild conditions in LbL films based on the reliable interaction between Ni2+- nitrilotriacetic acid (NTA) groups and polyhistidine-tags (His-tags)on the proteins and their subsequent photopatterning. This approach has potential applications spanning biofabrication, material engineering, and biotechnology.
Collapse
Affiliation(s)
- Yanjun Zheng
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - Fei Chen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410083, China
| | - Saskia Frank
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - Juan José Quispe Haro
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| |
Collapse
|
2
|
Wang J, Xu J, Liu X, Tong Y, Xu Z. Establishment of highly metastatic sublines and insights into telomerase expression during tumor metastasis using a microfluidic system. Talanta 2024; 280:126690. [PMID: 39126963 DOI: 10.1016/j.talanta.2024.126690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Metastasis is an important hallmark of malignant tumors, and telomerase often exhibits high expression in these tumors. Monitoring the real-time dynamics of telomerase will provide valuable insights into its association with tumor metastasis. In this study, we described a microfluidic system for screening highly metastatic sublines based on differential cell invasiveness, investigated telomerase expression in the process of tumor metastasis and explored the genes and signaling pathways involved in tumor metastasis. Cells with different metastasis abilities were efficiently classified into different channels, and the fluorescence imaging visually demonstrates that cells with higher metastasis ability have stronger telomerase activity. In addition, we successfully established the high-metastasis-ability LoVo subline (named as LoVo-H) and low-metastasis-ability LoVo subline (named as LoVo-L) from the human colorectal cancer LoVo cell lines through only one round of selection using the system. The results show that the LoVo-H cells display superior proliferation and invasiveness compared to LoVo-L cells. Furthermore, 6776 differentially expressed genes of LoVo-H compared with LoVo-L were identified by transcriptome sequencing. The genes associated with telomerase activity, cell migration and the epithelial to mesenchymal transition were up-regulated in LoVo-H, and PI3K-Akt signaling pathway, extracellular matrix-receptor interaction and Rap1 signaling pathway were significantly enriched in LoVo-H. This microfluidic system is a highly effective tool for selecting highly metastatic sublines and the LoVo-H subline established through this system presents a promising model for tumor metastasis research. Furthermore, this work preliminarily reveals telomerase expression during tumor metastasis and provides a new strategy for studying tumor metastasis and cancer diagnosis.
Collapse
Affiliation(s)
- Jie Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jiali Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yuxiao Tong
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
3
|
Yu N, Zhang F, Tang X, Liu Y, Zhang J, Yang B, Wang Q. Hierarchical hydrogel microarrays fabricated based on a microfluidic printing platform for high-throughput screening of stem cell lineage specification. Acta Biomater 2023; 161:144-153. [PMID: 36868445 DOI: 10.1016/j.actbio.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
2D cell cultures are suitable for rapid exploration of the factors in the extracellular matrix affecting the development of cells. The technology of the micrometre-sized hydrogel array provides a feasible, miniaturized, and high-throughput strategy for the process. However, current microarray devices lack a handy and parallelized methodology in sample treatment, which makes the process of high-throughput cell screening (HTCS) expensive and inefficient. Here, based on the functionalization of micro-nano structures and the fluid control capability of microfluidic chips, we build a microfluidic spotting-screening platform (MSSP). The MSSP can print 20000 microdroplet spots within 5 min, coupled with a simple strategy for parallel addition of compound libraries. Compared with open microdroplet arrays, the MSSP can control the evaporation rate of nanoliter droplets, providing a stable fabrication platform for hydrogel-microarray-based materials. As a proof-of-concept demonstration, the MSSP successfully controlled the adhesion, adipogenic, and osteogenic differentiation behavior of mesenchymal stem cells by rationally designing the substrate stiffness, adhesion area, and cell density. We anticipate that the MSSP may provide an accessible and promising tool for hydrogel-based HTCS. STATEMENT OF SIGNIFICANCE: High-throughput screening of cells is a common approach to improve the efficiency of biological experiments, and one challenge of the existing technologies is to achieve rapid and precise cell screening with a low-cost and simple strategy. Through the integration of the microfluidic and micro-nanostructure technologies, we fabricated a microfluidic spotting-screening platforms. Benefiting from the flexible control of the fluids, the device can print 20000 microdroplet spots within 5 min, coupled with a simple procedure for parallel addition of compound libraries. High-throughput screening of stem cell lineage specification has also been achieved by the platform, which provides a high-throughput, high-content information extraction strategy for cell-biomaterial interaction research.
Collapse
Affiliation(s)
- Nianzuo Yu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130031, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Feiran Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China
| | - Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China
| | - Yongshun Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130031, PR China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130031, PR China.
| |
Collapse
|
4
|
Dede Eren A, Lucassen AWA, Tuvshindorj U, Truckenmüller R, Giselbrecht S, Eren ED, Tas MO, Sudarsanam P, de Boer J. Cells Dynamically Adapt to Surface Geometry by Remodeling Their Focal Adhesions and Actin Cytoskeleton. Front Cell Dev Biol 2022; 10:863721. [PMID: 35721512 PMCID: PMC9203963 DOI: 10.3389/fcell.2022.863721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023] Open
Abstract
Cells probe their environment and adapt their shape accordingly via the organization of focal adhesions and the actin cytoskeleton. In an earlier publication, we described the relationship between cell shape and physiology, for example, shape-induced differentiation, metabolism, and proliferation in mesenchymal stem cells and tenocytes. In this study, we investigated how these cells organize their adhesive machinery over time when exposed to microfabricated surfaces of different topographies and adhesive island geometries. We further examined the reciprocal interaction between stress fiber and focal adhesion formation by pharmacological perturbations. Our results confirm the current literature that spatial organization of adhesive sites determines the ability to form focal adhesions and stress fibers. Therefore, cells on roughened surfaces have smaller focal adhesion and fewer stress fibers. Our results further highlight the importance of integrin-mediated adhesion in the adaptive properties of cells and provide clear links to the development of bioactive materials.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Amy W. A. Lucassen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Urandelger Tuvshindorj
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - E. Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mehmet Orhan Tas
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Phanikrishna Sudarsanam
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: Jan de Boer,
| |
Collapse
|
5
|
Allenby MC, Woodruff MA. Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials 2022; 284:121514. [DOI: 10.1016/j.biomaterials.2022.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|