1
|
Ding X, Zhou Q, Li X, Xiong X. Fast-charging anodes for lithium ion batteries: progress and challenges. Chem Commun (Camb) 2024; 60:2472-2488. [PMID: 38314874 DOI: 10.1039/d4cc00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Slow charging speed has been a serious constraint to the promotion of electric vehicles (EVs), and therefore the development of advanced lithium-ion batteries (LIBs) with fast-charging capability has become an urgent task. Thanks to its low price and excellent overall electrochemical performance, graphite has dominated the anode market for the past 30 years. However, it is difficult to meet the development needs of fast-charging batteries using graphite anodes due to their fast capacity degradation and safety hazards under high-current charging processes. This feature article describes the failure mechanism of graphite anodes under fast charging, and then summarizes the basic principles, current research progress, advanced strategies and challenges of fast-charging anodes represented by graphite, lithium titanate (Li4Ti5O12) and niobium-based oxides. Moreover, we look forward to the development prospects of fast-charging anodes and provide some guidance for future research in the field of fast-charging batteries.
Collapse
Affiliation(s)
- Xiaobo Ding
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Qingfeng Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xiaodan Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xunhui Xiong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
2
|
Chen Y, Chen W, Tong M, Mi S, Yao X, Zhang Z, Li S, Guo X, Zheng C, Wang C, Li D, Wang Z. Solution Combustion Synthesis of Submicron-Sized Titanium Niobium Oxide Anodes for High-Rate and Ultrastable Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:975-983. [PMID: 38154134 DOI: 10.1021/acs.langmuir.3c03202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Recently, the development of high-rate performance lithium-ion batteries is crucial for the development of next-generation energy storage systems. Nanoarchitecturing of the electrode material is a common strategy to improve the effective Li+ diffusion transport rate. However, this method often results in a reduction of volumetric energy density and battery stability. In this work, we propose a different strategy by synthesizing submicron-sized Ti2Nb10O29 (s-TNO) as a durable high-rate anode material using a facile and scalable solution combustion method, eliminating the dependence nanoarchitectures. The s-TNO electrode material exhibits a large tunnel structure and an excellent pseudocapacitive performance. The results show that this electrode material delivers a commendable reversible capacity of 238.7 mAh g-1 at 0.5 C and retains 78.2% of its capacity after 10,000 cycles at 10 C. This work provides a valuable guide for the synthesis of submicron-structured electrode materials using the solution combustion method, particularly for high-capacity, high-rate, and high-stability electrode materials.
Collapse
Affiliation(s)
- Yingyu Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Wen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Meiyun Tong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Suyu Mi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyu Yao
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zixuan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Shanlin Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xianglin Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Cheng Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Changhong Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Ansari SN, Saraf M, Abbas Z, Mobin SM. Heterostructures of MXenes and transition metal oxides for supercapacitors: an overview. NANOSCALE 2023; 15:13546-13560. [PMID: 37551924 DOI: 10.1039/d3nr01755a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
MXenes are a large family of two dimensional (2D) materials with high conductivity, redox activity and compositional diversity that have become front-runners in the materials world for a diverse range of energy storage applications. High-performing supercapacitors require electrode materials with high charge storage capabilities, excellent electrical conductivity for fast electron transfer, and the ability of fast charging/discharging with good cyclability. While MXenes show many of these properties, their energy storage capability is limited by a narrow electrochemically stable potential window due to irreversible oxidation under anodic potentials. Although transition metal oxides (TMOs) are often high-capacity materials with high redox activity, their cyclability and poor rate performance are persistent challenges because of their dissolution in aqueous electrolytes and mediocre conductivity. Forming heterostructures of MXenes with TMOs and using hybrid electrodes is a feasible approach to simultaneously increase the charge storage capacity of MXenes and improve the cyclability and rate performance of oxides. MXenes could also act as conductive substrates for the growth of oxides, which could perform as spacers to stop the aggregation of MXene sheets during charging/discharging and help in improving the supercapacitor performance. Moreover, TMOs could increase the interfacial contact between MXene sheets and help in providing short-diffusion ion channels. Hence, MXene/TMO heterostructures are promising for energy storage. This review summarizes the most recent developments in MXene/oxide heterostructures for supercapacitors and highlights the roles of individual components.
Collapse
Affiliation(s)
- Shagufi Naz Ansari
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
- Department of Chemistry, School of Engineering, Presidency University, Bangalore, 560064, India
| | - Mohit Saraf
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Zahir Abbas
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
- Center for Advance Electronics, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
4
|
Yuan Z, Lin Q, Li Y, Han W, Wang L. Effects of Multiple Ion Reactions Based on a CoSe 2 /MXene Cathode in Aluminum-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211527. [PMID: 36727407 DOI: 10.1002/adma.202211527] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Indexed: 05/17/2023]
Abstract
Rechargeable aluminum-ion batteries (RAIBs) have emerged as a promising battery storage technology owing to their cost-effectiveness, operational safety, and high energy density. However, their actual capacity is substantially lower than their true capacity and their cycling stability is poor. Therefore, understanding the energy-storage mechanism may contribute to the successful design of a stable electrode material, on which the performance can be optimized. The aim of this study is to investigate AlCl4 - ions in transition metal cathode materials and mechanisms that enable for their high-energy-storage potential and low Coulombic efficiency. Results of theoretical analysis and experimental verification show that a multi-ion transport mechanism is responsible for the electrochemical behavior of the battery. The lattice distortion of CoSe2 caused by AlCl4 - ion intercalation, has a considerable effect on the initial stability of the battery. MXene as a support material reduces the size of CoSe2 growing on its surface, effectively inhibiting the lattice distortion caused by the interaction with the aluminum-anion complex, thus addressing the issues of poor reversibility, cycle instability, and low Coulombic efficiency of the battery. Hence, understanding the impact of MXene on the battery may aid in further improving the design of electrode materials.
Collapse
Affiliation(s)
- Zeyu Yuan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Physics the State Key Laboratory of Inorganic, Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Qifeng Lin
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P. R. China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yilin Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Physics the State Key Laboratory of Inorganic, Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Wei Han
- College of Physics the State Key Laboratory of Inorganic, Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100083, P. R. China
| |
Collapse
|
5
|
Zhang H, Wang H, Pan Z, Wu Z, Deng Y, Xie J, Wang J, Han X, Hu W. Zn-Metal-Organic Framework Derived Ordered Mesoporous Carbon-Based Nanostructure for High-Performance and Universal Multivalent Metal Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206277. [PMID: 35986636 DOI: 10.1002/adma.202206277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic framework (MOF) derivatives promise great potential in energy storage and conversion because of their excellent tunability in both the active metal sites, organic links, and the overall structures down to atomic and up to mesoscale. Nevertheless, a big challenge is to precisely control and thoroughly understand the actual MOF-to-derivative conversion process to realize the template-free synthesis of the MOF-derived ordered mesoporous materials. Here, a class of ordered mesoporous N-doped carbon nanoflakes is presented with slit-shaped pores synthesized by one-step pyrolysis of Zn1 Cux -MOF, where the Cu doping plays a critically important direction-inducing function on the dissociation of organic ligands during the pyrolysis. Benefiting from the uniquely ordered mesoporous structure and large specific surface area (910 m2 g-1 ), the Zn1 Cux -MOF-derived ordered mesoporous carbon nanoflakes present outstanding electrochemical storage performance for multivalent metal ions, such as Mg2+ , Ca2+ , Co2+ , Ni2+ , Al3+ , and Zn2+ , demonstrating the universal nature of the slit-shaped pores in enabling the multivalent metal ions for energy storage. Moreover, the assembled flexible Zn-ion hybrid supercapacitor (ZHSC) delivers a high specific capacity of 134 mAh g-1 at 0.5 A g-1 , excellent cycling and mechanical stability, showing great application potential in the new generation energy storage devices.
Collapse
Affiliation(s)
- Hong Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Zhong Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yida Deng
- School of Materials Science and Engineering, Hainan University, Hai Kou, 570228, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|