1
|
Quan L, Yang Q, Jin Z, Li R, Xiao H, Wang L. Enhanced detection of Mycobacterium Tuberculosis using nanogold-based silver staining enhancement. Biomed Mater Eng 2025:9592989241308792. [PMID: 39973206 DOI: 10.1177/09592989241308792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Tuberculosis (TB) is a global health challenge from a single infectious agent, Mycobacterium tuberculosis (MTB), and it demands improved diagnostics and therapies. OBJECTIVE This work explored a novel method for detecting MTB by combining nanogold labeling (NGL) technology with silver staining to enhance sensitivity and specificity. METHODS Nanogold particles (NGPs) were characterized using ultraviolet absorption spectroscopy (UVAS), and their morphology was observed via transmission electron microscopy (TEM). The silver staining enhancement (SSE) system was optimized for a reaction time of 11 min. Fifty drug-resistant tuberculosis (DRT) patients were randomly assigned to a control (Ctrl) group receiving conventional nursing and an experimental (Exp) group treated with continuous nursing intervention (CNI). Quality of Life Instrument for Tuberculosis Patients (QLI-TB) scores were compared over 6 months. RESULTS Unmarked NGPs were evenly distributed, while labeled NGPs maintained complete morphology with a gray halo. The detection limit was established at 0.582, reaching as low as 1 pmol/L. For sputum specimens, detection rates were 38.7% for culture, 41.94% for PCR, and 43.54% for nanogold SSE, with no significant differences (P > 0.05). However, patients in the Exp group exhibited significant improvements in physical, psychological, and social functions, as well as the tuberculosis-specific module (TSM) compared to the Ctrl group (P < 0.05). CONCLUSIONS We demonstrated an innovative method for detecting MTB, demonstrating promising results through method optimization and analysis.
Collapse
Affiliation(s)
- Lili Quan
- Department of Nursing, Third People's Hospital of Yichang City, Yichang, China
| | - Qianrong Yang
- Department of Tuberculosis, Yichang Third People's Hospital, Yichang, China
| | - Zhu Jin
- Department of Tuberculosis, Yichang Third People's Hospital, Yichang, China
| | - Rong Li
- Department of Tuberculosis, Yichang Third People's Hospital, Yichang, China
| | - Han Xiao
- Department of Tuberculosis, Yichang Third People's Hospital, Yichang, China
| | - Lu Wang
- Department of Tuberculosis, Yichang Third People's Hospital, Yichang, China
| |
Collapse
|
2
|
Ren Y, Yang H, Xu D, Zhang Z, Gao S, Yu R. Application of Multifunctional Metal Nanoparticles in the Treatment of Glioma. Int J Nanomedicine 2025; 20:625-638. [PMID: 39839457 PMCID: PMC11748046 DOI: 10.2147/ijn.s493565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Glioma is the most common primary malignant brain tumor with a poor survival rate. It is characterized by diffuse and invasive growth and heterogeneity, which limits tumor identification and complete resection. Therefore, the precise detection and postoperative adjuvant therapy of gliomas have become increasingly important and urgent. Nanotechnology, with its excellent biocompatibility and controllable chemical properties, has attracted much attention in recent decades. Metal nanoparticles are widely used in the field of biomedical imaging and detection, and have shown promising applications in targeted drug delivery and therapy. The current review aims to systematically summarize the application of different types of metal nanoparticles in the treatment and detection of glioma. We also discussed the advantages and mechanisms of metal nanoparticles when used for glioma therapy, including chemotherapy, radiotherapy and photothermal therapy. We hope to promote the application of metallic nanoparticles in glioma diagnosis and treatment, moving towards clinical translation to benefit patients.
Collapse
Affiliation(s)
- Yanhong Ren
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Han Yang
- Department of Neurology, The First Hospital of Changsha, Changsha, 410008, People’s Republic of China
| | - Duo Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| | - Shangfeng Gao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| | - Rutong Yu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People’s Republic of China
| |
Collapse
|
3
|
Zhao Y, Wei X, Hernandez R. Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21164-21172. [PMID: 39691907 PMCID: PMC11648942 DOI: 10.1021/acs.jpcc.4c06055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly(allylamine hydrochloride)s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.
Collapse
Affiliation(s)
- Yinong Zhao
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xingfei Wei
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
You J, Qian Y, Xiong S, Zhang P, Mukwaya V, Levi-Kalisman Y, Raviv U, Dou H. Poly(ferrocenylsilane)-Based Redox-Active Artificial Organelles for Biomimetic Cascade Reactions. Chemistry 2024; 30:e202401435. [PMID: 38739532 DOI: 10.1002/chem.202401435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghui Qian
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuhan Xiong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Wei X, Chen C, Popov AV, Bathe M, Hernandez R. Binding Site Programmable Self-Assembly of 3D Hierarchical DNA Origami Nanostructures. J Phys Chem A 2024; 128:4999-5008. [PMID: 38875485 DOI: 10.1021/acs.jpca.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
DNA nanotechnology has broad applications in biomedical drug delivery and programmable materials. Characterization of the self-assembly of DNA origami and quantum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchical nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multimeric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of different multimeric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the αγ positions (of the pentagon) make larger nanostructures than those with binding sites at the αβ positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis.
Collapse
Affiliation(s)
- Xingfei Wei
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chi Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander V Popov
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Sun M, Xie M, Jiang J, Qi Z, Wang L, Chao J. Customized Self-Assembled Gold Nanoparticle-DNA Origami Composite Templates for Shape-Directed Growth of Plasmonic Structures. NANO LETTERS 2024; 24:6480-6487. [PMID: 38771966 DOI: 10.1021/acs.nanolett.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.
Collapse
Affiliation(s)
- Mengyao Sun
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mo Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jinke Jiang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhonglin Qi
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
7
|
Chen Z, Chen X, Zhao B, Zhang H, Zhang H. Efficient Poly-Adenine-Tailed DNA Functionalization of Gold Nanorods for Tailored Nanostructure Assembly. J Phys Chem Lett 2024; 15:4400-4407. [PMID: 38624102 DOI: 10.1021/acs.jpclett.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Gold nanorods (AuNRs) with unique optical properties play a pivotal role in applications in plasmonic imaging, small molecule detection, and photothermal therapy. However, challenges in DNA functionalization of AuNRs hinder their full potential due to the presence of a dense cetyltrimethylammonium bromide (CTAB) bilayer, impeding close DNA contact. In this study, we introduced a convenient approach for the rapid assembly of polyadenine (polyA) tailed DNA on AuNRs with control of DNA density, rigidity, and valence. We explored the impact of DNA with designed properties on the construction of core-satellite structures by employing AuNRs as cores and spherical gold nanoparticles (AuNSs) as satellites. Density, rigidity, and valence are identified as crucial factors for efficient construction. Specifically, polyA-tailed DNA modulated DNA density and reduced spatial hindrance and electrostatic repulsion, thereby facilitating the construction. Enhancing the rigidity of DNA and incorporating multiple binding sites can further improve the efficiency.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Honglu Zhang
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Li W, Wang Z, Su Q, Chen J, Wu Q, Sun X, Zhu S, Li X, Wei H, Zeng J, Guo L, Zhang C, He J. A Reconfigurable DNA Framework Nanotube-Assisted Antiangiogenic Therapy. JACS AU 2024; 4:1345-1355. [PMID: 38665667 PMCID: PMC11040663 DOI: 10.1021/jacsau.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
A major limitation of tumor antiangiogenic therapy is the pronounced off-target effect, which can lead to unavoidable injury in multiple organs. Ensuring sufficient delivery and controlled release of these antiangiogenic agents at tumor sites is crucial for realizing their clinical application. Here, we develop a smart DNA-based nanodrug, termed Endo-rDFN, by precisely assembling the antiangiogenic agent, endostar (Endo), into a reconfigurable DNA framework nanotube (rDFN) that could recognize tumor-overexpressed nucleolin to achieve the targeted delivery and controllable release of Endo. Endo-rDFN can not only effectively enhance the tumor-targeting capability of Endo and maintain its efficient accumulation in tumor tissues but also achieve on-demand release of Endo at tumor sites via the specific DNA aptamer for tumor-overexpressed nucleolin, named AS1411. We also found that Endo-rDFN exhibited significant inhibition of angiogenesis and tumor growth, while also providing effective protection against multiorgan injury (heart, liver, spleen, kidney, lung, etc.) to some extent, without compromising the function of these organs. Our study demonstrates that rDFN represents a promising vector for reducing antiangiogenic therapy-induced multiorgan injury, highlighting its potential for promoting the clinical application of antiangiogenic agents.
Collapse
Affiliation(s)
- Wei Li
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
- Department
of Endocrinology and Metabolism, 481 Center for Diabetes and Metabolism
Research, West China 482 Hospital, Sichuan
University, Chengdu 610041, China
| | - Zhongliang Wang
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Qing Su
- Department
of Pharmacy, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Jie Chen
- Department
of Radiation Oncology, Cancer Hospital of
Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Qian Wu
- Department
of Pathology, Beijing Sixth Hospital, Beijing
University, Beijing 100080, China
| | - Xue Sun
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Shuhan Zhu
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaodie Li
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Hao Wei
- Department
of Urology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, China
| | - Jialin Zeng
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Linlang Guo
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Chao Zhang
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
9
|
Tang D, Shi J, Wu Y, Luo H, Yan J, Huang KJ, Tan X. Flexible Self-Powered Sensing System Based on Novel DNA Circuit Strategy and Graphdiyne for Thalassemia Gene by Rapid Naked-Eye Tracking and Open-Circuit Voltage. Anal Chem 2023; 95:16374-16382. [PMID: 37871958 DOI: 10.1021/acs.analchem.3c03841] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Based on the controllable instantaneous self-assembly ability of long-chain branched DNA nanostructures and the synergistic effect between nucleic acid amplification without enzymes, a highly sensitive and highly specific self-powered biosensing platform is developed. Two-dimensional graphdiyne is prepared, modified on flexible carbon cloth, and then functionalized with gold nanoparticles. When DNA mi-tubes are applied on it, target thalassemia gene CD122 triggers a dual-catalytic hairpin assembly reaction. The generated nanoscale DNA is precisely captured by the DNA mi-tube, exposing binding sites and activating the hybridization chain reaction to form long-chain branched DNA. Double-stranded DNA, along with dendritic DNA carrying a large number of guanine bases, precisely captures the signal molecule methylene blue (MB), generating a significant electrochemical signal. The redox reaction of MB also causes a proportional change in the system's color, achieving a colorimetric detection functionality. An efficient dual-mode self-powered sensing platform, therefore, is established for detecting the thalassemia gene CD122. The linear response range of target concentration to open-circuit voltage and RGB Blue value is 0.0001-10,000 pM. The detection limit under electrochemical mode is 36.3 aM (S/N = 3), and under colorimetric mode, it is as low as 12.1 aM (S/N = 3). The new method exhibits high sensitivity, excellent selectivity, and high accuracy, providing a universal strategy for designing novel biosensing platforms that can be extended to the detection of other biomolecules.
Collapse
Affiliation(s)
- Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinyue Shi
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
10
|
Saliba D, Luo X, Rizzuto FJ, Sleiman HF. Programming rigidity into size-defined wireframe DNA nanotubes. NANOSCALE 2023; 15:5403-5413. [PMID: 36826342 DOI: 10.1039/d2nr06185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanotubes built from DNA hold promise for several biological and materials applications, due to their high aspect ratio and encapsulation potential. A particularly appealing goal is to control the size, shape, and dynamic behaviour of DNA nanotubes with minimal design alteration, as nanostructures of varying morphologies and lengths have been shown to exhibit distinct cellular uptake, encapsulation behaviour, and in vivo biodistribution. Herein, we report a systematic investigation, combining experimental and computational design, to modulate the length, flexibility, and longitudinal patterns of wireframe DNA nanotubes. Subtle design changes govern the structure and properties of our nanotubes, which are built from a custom-made, long, and size-defined template strand to which DNA rungs and linkers are attached. Unlike DNA origami, these custom-made strands possess regions with repeating sequences at strategic locations, thereby reducing the number of strands necessary for assembly. Through strand displacement, the nanotubes can be reversibly altered between extended and collapsed morphologies. These design concepts enable fine-tuning of the nanotube stiffness and may pave the way for the development of designer nanotubes for a variety of applications, including the study of cellular internalization, biodistribution, and uptake mechanisms for structures of varied shapes and sizes.
Collapse
Affiliation(s)
- Daniel Saliba
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
| | - Felix J Rizzuto
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
11
|
Chen C, Nie J, Ma M, Shi X. DNA Origami Nanostructure Detection and Yield Estimation Using Deep Learning. ACS Synth Biol 2023; 12:524-532. [PMID: 36696234 DOI: 10.1021/acssynbio.2c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA origami is a milestone in DNA nanotechnology. It is robust and efficient in constructing arbitrary two- and three-dimensional nanostructures. The shape and size of origami structures vary. To characterize them, an atomic force microscope, a transmission electron microscope, and other microscopes are utilized. However, the identification of various origami nanostructures heavily depends on the experience of researchers. In this study, we used the deep learning method (improved Yolox) to detect multiple DNA origami structures and estimate their yield. We designed a feature enhancement fusion network with the attention mechanism, and related parameters were researched. Experiments conducted to verify the proposed method showed that the detection accuracy was higher than that of other methods. This method can detect and estimate the DNA origami yield in complex environments, and the detection speed is in the millisecond range.
Collapse
Affiliation(s)
- Congzhou Chen
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing100029, China
| | - Jinyan Nie
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100094, China
| | - Mingyuan Ma
- School of Computer Science, Peking University, Beijing100871, China
| | - Xiaolong Shi
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
12
|
Xie C, Chen Z, Chen K, Hu Y, Pan L. Regulating the Polymerization of DNA Structures via Allosteric Control of Monomers. ACS NANO 2023; 17:1505-1510. [PMID: 36633930 DOI: 10.1021/acsnano.2c10456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Regulation of self-assembly is crucial in constructing structural biomaterials, such as tunable DNA nanostructures. Traditional tuning of self-assembled DNA nanostructures was mainly conducted by introducing external stimuli after the assembly process. Here, we explored the allosteric assembly of DNA structures via introducing external stimuli during the assembly process to produce structurally heterogeneous polymerization products. We demonstrated that ethidium bromide (EB), a DNA intercalator, could increase the left-handed out-of-plane chirality of curved DNA structures. Then, EB and double strands were introduced as competing stimuli to transform monomers into allosteric conformations, leading to three different polymerization products. The steric trap between different polymerization products promoted the polymerized structures to keep their geometric properties, like chirality, under varying intensity of external stimuli. Our strategy harnesses allosteric effects for assembly of DNA-based materials and is expected to expand the design space for advanced control in synthetic materials.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, 050043 Hebei, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| |
Collapse
|
13
|
Chen Z, Chen K, Xie C, Liao K, Xu F, Pan L. Cyclic transitions of DNA origami dimers driven by thermal cycling. NANOTECHNOLOGY 2022; 34:065601. [PMID: 36332233 DOI: 10.1088/1361-6528/aca02f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
It is widely observed that life activities are regulated through conformational transitions of biological macromolecules, which inspires the construction of environmental responsive nanomachines in recent years. Here we present a thermal responsive DNA origami dimers system, whose conformations can be cyclically switched by thermal cycling. In our strategy, origami dimers are assembled at high temperatures and disassembled at low temperatures, which is different from the conventional strategy of breaking nanostructures using high temperatures. The advantage of this strategy is that the dimers system can be repeatedly operated without significant performance degradation, compared to traditional strategies such as conformational transitions via i-motif and G-quadruplexes, whose performance degrades with sample dilution due to repeated addition of trigger solutions. The cyclic conformational transitions of the dimers system are verified by fluorescence curves and AFM images. This research offered a new way to construct cyclic transformational nanodevices, such as reusable nanomedicine delivery systems or nanorobots with long service lifetimes.
Collapse
Affiliation(s)
- Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Kangchao Liao
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Fei Xu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| |
Collapse
|
14
|
Zhang J, Song C, Wang L. DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Phys Chem Chem Phys 2022; 24:23959-23979. [PMID: 36168789 DOI: 10.1039/d2cp02100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in DNA technology have made it possible to combine with the plasmonics to fabricate reconfigurable dynamic nanodevices with extraordinary property and function. These DNA-mediated plasmonic nanostructures have been investigated for a variety of unique and beneficial physicochemical properties and their dynamic behavior has been controlled by endogenous or exogenous stimuli for a variety of interesting biological applications. In this perspective, the recent efforts to use the DNA nanostructures as molecular linkers for fabricating dynamic plasmonic nanostructures are reviewed. Next, the actuation media for triggering the dynamic behavior of plasmonic nanostructures and the dynamic response in optical features are summarized. Finally, the applications, remaining challenges and perspectives of the DNA-mediated dynamic plasmonic nanostructures are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Chunyuan Song
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Lab for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
15
|
da Silva FG, Formo EV, Camargo PHC. Achieving enhanced peroxidase-like activity in multimetallic nanorattles. Dalton Trans 2022; 51:15133-15141. [PMID: 36129247 DOI: 10.1039/d2dt02389j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (Au NPs) have been extensively used as artificial enzymes, but their performance is still limited. We address this challenge by focusing on multimetallic nanorattles comprising an Au core inside a bimetallic AgAu shell, separated by a void (Au@AgAu NRs). They were prepared by a galvanic replacement approach and contained an ultrathin and porous shell comprising an AgAu alloy. By investigating the peroxide-like activity using TMB oxidation as a model transformation, we have found an increase of 152 fold in activities for the NRs relative to conventional Au NPs. Based on the kinetics results, the NRs also showed the lowest Km, indicating better interaction with the substrate and faster product formation. We also observed a linear relationship between the concentration of the product and oxTMB as a function of H2O2 concentration, which could be further applied for H2O2 sensing applications (colorimetric detection). These data suggest that the NRs enable the combined effect of an increased surface area relative to solid counterparts, the possibility of exposing highly active surface sites, and the exploitation of nanoconfinement effects due to the void regions between the core and shell components. These results provide important insights into the optimization of peroxidase-like performances beyond what can be achieved in conventional NPs and may inspire the development of better-performing artificial enzymes.
Collapse
Affiliation(s)
- Flavia G da Silva
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland.
| | - Eric V Formo
- University of Georgia, Georgia Electron Microscopy, Athens, Georgia 30602, USA
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland.
| |
Collapse
|
16
|
Yu L, Zhu L, Peng Y, Sheng M, Huang J, Yang X. Versatile Electrochemiluminescence Biosensing Platform Based on DNA Nanostructures and Catalytic Hairpin Assembly Signal Amplification. Anal Chem 2022; 94:11368-11374. [PMID: 35925773 DOI: 10.1021/acs.analchem.2c02239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Achieving rapid and highly sensitive detection of biomarkers is crucial for disease diagnosis and treatment. Here, a highly sensitive and versatile dual-amplification electrochemiluminescence (ECL) biosensing platform was constructed for target detection based on DNA nanostructures and catalyzed hairpin assembly (CHA). Specifically, when the target DNA was present, it would hybridize with the auxiliary strands (D1 and D2) to form an I-shaped nanostructure, which in turn triggered the subsequent catalytic hairpin assembly reaction to generate plenty of double-stranded DNA complexes (H1-H2). The resulting double-stranded complex could be trapped on the electrode surface and adsorbed the ECL signal probe Ru(phen)32+.We found that the I-shaped nanostructure-triggered CHA reaction had higher amplification efficiency compared with traditional CHA amplification. Thus, a sensitive "signal-on" ECL biosensor was constructed for target DNA detection with a detection limit of 1.09 fM. Additionally, by combining the binding properties of C-Ag+-C with an elaborately designed "Ag+-helper" probe, the proposed strategy could be immediately utilized for the highly sensitive and selective detection of silver ions, demonstrating the versatility of the developed biosensing platform. This strategy provided a new approach with potential applications in disease diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liping Zhu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Peng
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengting Sheng
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|