1
|
Lee Y, Hong S, Moon I, Kim CJ, Lee Y, Hong BH. Laser-assisted synthesis and modification of 2D materials. NANOTECHNOLOGY 2024; 36:052003. [PMID: 39433061 DOI: 10.1088/1361-6528/ad892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Two-dimensional (2D) materials with unique physical, electronic, and optical properties have been intensively studied to be utilized for the next-generation electronic and optical devices, and the use of laser energy in the synthesis and modification of 2D materials is advantageous due to its convenient and fast fabrication processes as well as selective, controllable, and cost-effective characteristics allowing the precise control in materials properties. This paper summarizes the recent progress in utilizations of laser technology in synthesizing, doping, etching, transfer and strain engineering of 2D materials, which is expected to provide an insight for the future applications across diverse research areas.
Collapse
Affiliation(s)
- Yejun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunhwa Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Issac Moon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Jin Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunseok Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Graphene Research Center & Graphene Square Inc., Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea
| |
Collapse
|
2
|
Xiao W, Wang Z, Gui Y. Adsorption Properties of Metal Atom (Co, V, W, Zr)-Modified MoTe 2 for CO, CH 3CHO, and C 6H 6 Gases: A DFT Study. Molecules 2024; 29:5086. [PMID: 39519727 PMCID: PMC11547787 DOI: 10.3390/molecules29215086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the adsorption characteristics of the pristine MoTe2 monolayer and the metal atom (Co, V, W, Zr)-modified MoTe2 monolayer on the hazardous gases CO, CH3CHO, and C6H6 based on the density functional theory. The adsorption mechanism was studied from the perspectives of molecular density differences, band structures, molecular orbitals, and the density of states. Research analysis showed that the changes in conductivity caused by the adsorption of different gases on the substrate were significantly different, which can be used to prepare gas sensing materials with selective sensitivity for CO, CH3CHO, and C6H6. This study lays a reliable theoretical foundation for the gas sensing analysis of toxic and hazardous gases using metal atom-modified MoTe2 materials.
Collapse
Affiliation(s)
- Weizhong Xiao
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China;
| | - Zixuan Wang
- School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, China
| | - Yingang Gui
- College of Engineering and Technology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
3
|
Chaudhary N, Bhatt K, Khan T, Singh R. Gamma-induced stress, strain and p-type doping in MBE-grown thin film MoTe 2. Phys Chem Chem Phys 2024; 26:22529-22538. [PMID: 39148478 DOI: 10.1039/d4cp02600d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A thorough examination of the stability of a 2D MoTe2 thin film exposed to high-dose gamma radiation (γ) is addressed in this study. This study compares the film before and after irradiation (10-600 kGy dosage) to report the impact of γ radiation on the surface morphology, work function, tensile strain and charge redistribution in the MoTe2 thin film. The radiation damage to the film is monitored by optical micrographs (OM) and with atomic force microscopy (AFM) and conceptualized by thermal strain in the film. Raman spectroscopy has been used to analyze the shifting and to address the strain that arises due to irradiation in its vibrational mode. Kelvin probe force microscopy (KPFM) has been performed to evaluate the work function of the film, which increases by 0.14 eV for the 600 kGy γ-irradiated sample, implying shifting of the Fermi-level to the valence band of the spectrum and thus it results in p-type doping in the film. Owing to the reduced atomic mass and high energy of tellurium atoms, γ-irradiation causes tellurium vacancies, which lead to the formation of dangling bonds at unoccupied sites. When oxygen is adsorbed at these reactive spots, a charge-transfer mechanism takes place. This mechanism involves the transfer of electrons from the thin MoTe2 film to the adsorbed oxygen, forming oxides and causing p-type doping. Furthermore, p-doping is verified by the valence band shifting by 1.27 eV in 600 kGy in γ-irradiated samples in X-ray photoelectron spectroscopy. This comprehensive study shows how γ irradiation affects the chemical and physical characteristics of the MoTe2 thin film. Consequently, it shows that if devices integrating MoTe2 thin films are meant to be used in high-dose radiation conditions, the adsorbate concentrations, radiation shielding and required lifetimes must be carefully evaluated.
Collapse
Affiliation(s)
- Nahid Chaudhary
- School of Interdisciplinary, Indian Institute of Technology Delhi, India.
| | - Kamlesh Bhatt
- Department of Physics, Indian Institute of Technology Delhi, India
| | - Taslim Khan
- Department of Physics, Indian Institute of Technology Delhi, India
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology Delhi, India
| |
Collapse
|
4
|
Khaustov VO, Convertino D, Köster J, Zakharov AA, Mohn MJ, Gebeyehu ZM, Martini L, Pace S, Marini G, Calandra M, Kaiser U, Forti S, Coletti C. Heterocontact-Triggered 1H to 1T' Phase Transition in CVD-Grown Monolayer MoTe 2: Implications for Low Contact Resistance Electronic Devices. ACS APPLIED NANO MATERIALS 2024; 7:18094-18105. [PMID: 39206354 PMCID: PMC11348416 DOI: 10.1021/acsanm.3c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/16/2023] [Indexed: 09/04/2024]
Abstract
Single-layer molybdenum ditelluride (MoTe2) has attracted attention due to the smaller energy difference between the semiconducting (1H) and semimetallic (1T') phases with respect to other two-dimensional transition metal dichalcogenides (TMDs). Understanding the phenomenon of polymorphism between these structural phases is of great fundamental and practical importance. In this paper, we report a 1H to 1T' phase transition occurring during the chemical vapor deposition (CVD) synthesis of single-layer MoTe2 at 730 °C. The transformation originates at the heterocontact between monoclinic and hexagonal crystals and progresses to either yield a partial or complete 1H to 1T' phase transition. Microscopic and spectroscopic analyses of the MoTe2 crystals reveal the presence of Te vacancies and mirror twin boundaries (MTB) domains in the hexagonal phase. The experimental observations and theoretical simulations indicate that the combination of heterocontact formation and Te vacancies are relevant triggering mechanisms in the observed transformation. By advancing in the understanding and controlling of the direct synthesis of lateral 1T'/1H heterostructures, this work contributes to the development of MoTe2-based electronic and optoelectronic devices with low contact resistance.
Collapse
Affiliation(s)
- Vladislav O. Khaustov
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Domenica Convertino
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Janis Köster
- Central
Facility for Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | - Michael J. Mohn
- Central
Facility for Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Zewdu M. Gebeyehu
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Leonardo Martini
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Simona Pace
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Marini
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Matteo Calandra
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
- Institut
des Nanosciences de Paris, UMR7588, Sorbonne
Université, CNRS, F-75252 Paris, France
| | - Ute Kaiser
- Central
Facility for Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Stiven Forti
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
5
|
Ullah K, Li Q, Li T, Gu T. Melting-free integrated photonic memory with layered polymorphs. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2089-2099. [PMID: 39634495 PMCID: PMC11502050 DOI: 10.1515/nanoph-2023-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 12/07/2024]
Abstract
Chalcogenide-based nonvolatile phase change materials (PCMs) have a long history of usage, from bulk disk memory to all-optic neuromorphic computing circuits. Being able to perform uniform phase transitions over a subwavelength scale makes PCMs particularly suitable for photonic applications. For switching between nonvolatile states, the conventional chalcogenide phase change materials are brought to a melting temperature to break the covalent bonds. The cooling rate determines the final state. Reversible polymorphic layered materials provide an alternative atomic transition mechanism for low-energy electronic (small domain size) and photonic nonvolatile memories (which require a large effective tuning area). The small energy barrier of breaking van der Waals force facilitates low energy, fast-reset, and melting-free phase transitions, which reduces the chance of element segregation-associated device failure. The search for such material families starts with polymorphic In2Se3, which has two layered structures that are topologically similar and stable at room temperature. In this perspective, we first review the history of different memory schemes, compare the thermal dynamics of phase transitions in amorphous-crystalline and In2Se3, detail the device implementations for all-optical memory, and discuss the challenges and opportunities associated with polymorphic memory.
Collapse
Affiliation(s)
- Kaleem Ullah
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19716, USA
| | - Qiu Li
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19716, USA
- Tianjin Key Laboratory of High-Speed Cutting and Precision Machining, Tianjin University of Technology and Education, Tianjin300222, China
| | - Tiantian Li
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19716, USA
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, China
| | - Tingyi Gu
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19716, USA
| |
Collapse
|
6
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Yin Z, Panaccione W, Hu A, Douglas ORT, Tanjil MRE, Jeong Y, Zhao H, Wang MC. Directionally-Resolved Phononic Properties of Monolayer 2D Molybdenum Ditelluride (MoTe 2) under Uniaxial Elastic Strain. NANO LETTERS 2023; 23:11763-11770. [PMID: 38100381 DOI: 10.1021/acs.nanolett.3c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Understanding the phonon characteristics of two-dimensional (2D) molybdenum ditelluride (MoTe2) under strain is critical to manipulating its multiphysical properties. Although there have been numerous computational efforts to elucidate the strain-coupled phonon properties of monolayer MoTe2, empirical validation is still lacking. In this work, monolayer 1H-MoTe2 under uniaxial strain is studied via in situ micro-Raman spectroscopy. Directionally dependent monotonic softening of the doubly degenerate in-plane E2g1 phonon mode is observed with increasing uniaxial strain, where the E2g1 peak red-shifts -1.66 ± 0.04 cm-1/% along the armchair direction and -0.80 ± 0.07 cm-1/% along the zigzag direction. The corresponding Grüneisen parameters are calculated to be 1.09 and 0.52 along the armchair and zigzag directions, respectively. This work provides the first empirical quantification and validation of the orientation-dependent strain-coupled phonon response in monolayer 1H-MoTe2 and serves as a benchmark for other prototypical 2D transition-metal tellurides.
Collapse
Affiliation(s)
- Zhewen Yin
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Wyatt Panaccione
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Anjun Hu
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Ossie R T Douglas
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Yunjo Jeong
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Huijuan Zhao
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Michael Cai Wang
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
8
|
Wu J, Ye Y, Jian J, Yao X, Li J, Tang B, Ma H, Wei M, Li W, Lin H, Li L. Reversible Thermally Driven Phase Change of Layered In 2Se 3 for Integrated Photonics. NANO LETTERS 2023. [PMID: 37405904 DOI: 10.1021/acs.nanolett.3c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Two-dimensional In2Se3, an unconventional phase-change material, has drawn considerable attention for polymorphic phase transitions and electronic device applications. However, its reversible thermally driven phase transitions and potential use in photonic devices have yet to be explored. In this study, we observe the thermally driven reversible phase transitions between α and β' phases with the assistance of local strain from surface wrinkles and ripples, as well as reversible phase changes within the β phase family. These transitions lead to changes in the refractive index and other optoelectronic properties with minimal optical loss at telecommunication bands, which are crucial in integrated photonic applications such as postfabrication phase trimming. Additionally, multilayer β'-In2Se3 working as a transparent microheater proves to be a viable option for efficient thermo-optic modulation. This prototype design for layered In2Se3 offers immense potential for integrated photonics and paves the way for multilevel, nonvolatile optical memory applications.
Collapse
Affiliation(s)
- Jianghong Wu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| | - Yuting Ye
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| | - Jialing Jian
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| | - Xiaoping Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| | - Junying Li
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Bo Tang
- Institute of Microelectronics, Chinese Academic Society, Beijing 100029, People's Republic of China
| | - Hui Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Maoliang Wei
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wenbin Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| | - Hongtao Lin
- State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, People's Republic of China
| |
Collapse
|
9
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
10
|
Zhong A, Zhou Y, Jin H, Yu H, Wang Y, Luo J, Huang L, Sun Z, Zhang D, Fan P. Superior Performances of Self-Driven Near-Infrared Photodetectors Based on the SnTe:Si/Si Heterostructure Boosted by Bulk Photovoltaic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206262. [PMID: 36642832 DOI: 10.1002/smll.202206262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The upsurge of new materials that can be used for near-infrared (NIR) photodetectors operated without cooling is crucial. As a novel material with a small bandgap of ≈0.28 eV, the topological crystalline insulator SnTe has attracted considerable attention. Herein, this work demonstrates self-driven NIR photodetectors based on SnTe/Si and SnTe:Si/Si heterostructures. The SnTe/Si heterostructure has a high detectivity D* of 3.3 × 1012 Jones. By Si doping, the SnTe:Si/Si heterostructure reduces the dark current density and increases the photocurrent by ≈1 order of magnitude simultaneously, which improves the detectivity D* by ≈2 orders of magnitude up to 1.59 × 1014 Jones. Further theoretical analysis indicates that the improved device performance may be ascribed to the bulk photovoltaic effect (BPVE), in which doped Si atoms break the inversion symmetry and thus enable the generation of additional photocurrents beyond the heterostructure. In addition, the external quantum efficiency (EQE) measured at room temperature at 850 nm increases by a factor of 7.5 times, from 38.5% to 289%. A high responsivity of 1979 mA W-1 without bias and fast rising time of 8 µs are also observed. The significantly improved photodetection achieved by the Si doping is of great interest and may provide a novel strategy for superior photodetectors.
Collapse
Affiliation(s)
- Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yue Zhou
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Hao Jin
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Huimin Yu
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yunkai Wang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jingting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Longbiao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Zhenhua Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Dongping Zhang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
11
|
Lee CH, Ryu H, Nolan G, Zhang Y, Lee Y, Oh S, Cheong H, Watanabe K, Taniguchi T, Kim K, Lee GH, Huang PY. In Situ Imaging of an Anisotropic Layer-by-Layer Phase Transition in Few-Layer MoTe 2. NANO LETTERS 2023; 23:677-684. [PMID: 36648125 DOI: 10.1021/acs.nanolett.2c04550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the phase transition mechanisms in two-dimensional (2D) materials is a key to precisely tailor their properties at the nanoscale. Molybdenum ditelluride (MoTe2) exhibits multiple phases at room temperature, making it a promising candidate for phase-change applications. Here, we fabricate lateral 2H-Td interfaces with laser irradiation and probe their phase transitions from micro- to atomic scales with in situ heating in the transmission electron microscope (TEM). By encapsulating the MoTe2 with graphene protection layers, we create an in situ reaction cell compatible with atomic resolution imaging. We find that the Td-to-2H phase transition initiates at phase boundaries at low temperatures (200-225 °C) and propagates anisotropically along the b-axis in a layer-by-layer fashion. We also demonstrate a fully reversible 2H-Td-2H phase transition cycle, which generates a coherent 2H lattice containing inversion domain boundaries. Our results provide insights on fabricating 2D heterophase devices with atomically sharp and coherent interfaces.
Collapse
Affiliation(s)
- Chia-Hao Lee
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Huije Ryu
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Korea
| | - Gillian Nolan
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Yichao Zhang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| | - Yangjin Lee
- Department of Physics, Yonsei University, Seoul03722, Korea
| | - Siwon Oh
- Department of Physics, Sogang University, Seoul04107, Korea
| | | | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul03722, Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Korea
| | - Pinshane Y Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
12
|
Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H. Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204380. [PMID: 36135779 DOI: 10.1002/smll.202204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Over the past decade, 2D van der Waals (vdW) topological materials (TMs), including topological insulators and topological semimetals, which combine atomically flat 2D layers and topologically nontrivial band structures, have attracted increasing attention in condensed-matter physics and materials science. These easily cleavable and integrated TMs provide the ideal platform for exploring topological physics in the 2D limit, where new physical phenomena may emerge, and represent a potential to control and investigate exotic properties and device applications in nanoscale topological phases. However, multifaced efforts are still necessary, which is the prerequisite for the practical application of 2D vdW TMs. Herein, this review focuses on the preparation, properties, and device applications of 2D vdW TMs. First, three common preparation strategies for 2D vdW TMs are summarized, including single crystal exfoliation, chemical vapor deposition, and molecular beam epitaxy. Second, the origin and regulation of various properties of 2D vdW TMs are introduced, involving electronic properties, transport properties, optoelectronic properties, thermoelectricity, ferroelectricity, and magnetism. Third, some device applications of 2D vdW TMs are presented, including field-effect transistors, memories, spintronic devices, and photodetectors. Finally, some significant challenges and opportunities for the practical application of 2D vdW TMs in 2D topological electronics are briefly addressed.
Collapse
Affiliation(s)
- Gaojie Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wu
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Zhang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Li Yang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanmiao Xie
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Fei Guo
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Microelectronics and Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Wenfeng Zhang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen R&D Center of Huazhong University of Science and Technology (HUST), Shenzhen, 518000, China
| |
Collapse
|
13
|
Lu J, Ye Q, Ma C, Zheng Z, Yao J, Yang G. Dielectric Contrast Tailoring for Polarized Photosensitivity toward Multiplexing Optical Communications and Dynamic Encrypt Technology. ACS NANO 2022; 16:12852-12865. [PMID: 35914000 DOI: 10.1021/acsnano.2c05114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A selective-area oxidation strategy is developed to polarize high-symmetry 2D layered materials (2DLMs). The dichroic ratio of the derived O-WS2/WS2 photodetector reaches ∼8, which is competitive among state-of-the-art polarization photodetectors. Finite-different time-domain simulations consolidate that the polarization-sensitive photoresponse is associated with anisotropic spacial confinement, which gives rise to distinct dielectric contrasts for linearly polarized light of various directions and thus the polarization-dependent near-field distribution. Furthermore, selective-area oxidation treatment brings about dual effects, comprising the in situ formation of seamless in-plane WS2 homojunctions by thickness tailoring and the formation of out-of-plane O-WS2/WS2 heterojunctions. As a consequence, the recombination of photocarriers is markedly suppressed, resulting in outstanding photosensitivity with the optimized responsivity, external quantum efficiency, and detectivity of 0.161 A/W, 49.4%, and 1.4 × 1011 Jones for an O-WS2/WS2 photodetector in a self-powered mode. A scheme of multiplexing optical communications is revealed by harnessing the intensity and polarization state of light as independent transmission channels. Furthermore, dynamic encryption by leveraging the polarization state as a secret key is proposed. In the end, broad universality is reinforced through the induction of linear dichroism within 2D WSe2 crystals. On the whole, this study provides an additional perspective on polarization optoelectronics based on 2DLMs.
Collapse
Affiliation(s)
- Jianting Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Qiaojue Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|