1
|
Yao Y, Qi M, Chen L, Hu E, Cai H, Gu D, Wang Z, Cui Y, Qian G. Achieving Excess Hydrogen Output via Concurrent Electrochemical and Chemical Redox Reactions on P-Doped Co-Based Catalysts with Electron Manipulation and Kinetic Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406288. [PMID: 39575485 DOI: 10.1002/smll.202406288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Indexed: 01/11/2025]
Abstract
Electrolytic hydrogen production is of great significance in energy conversion and sustainable development. Traditional electrolytic water splitting confronts high anode voltage with oxygen generation and the amount of hydrogen produced at cathode depends entirely on the quantity of electric charge input. Herein, excess hydrogen output can be achieved by constructing a spontaneous hydrazine oxidation reaction (HzOR) coupled hydrogen evolution reaction (HER) system. For the hydrazine oxidation-assisted electrolyzer in this work, both the external input electrons and the electrons produced by spontaneous chemical redox reaction can reduce water, producing more hydrogen than traditional electrolytic water splitting system. The ultrafast kinetics of bifunctional P-doped Co-based catalysts plays a key role in the spontaneous feature of HzOR/HER redox reaction and low working voltage of hydrazine oxidation-assisted electrolyzer (12 mV@100 mA cm-2). Theoretical calculation results and ex situ/in situ spectra demonstrate that doped P could optimize electronic structure, regulate adsorption energy of intermediates, and thus endows catalysts with ultrafast kinetics. This work provides a new pathway for the development of spontaneous oxidation-assisted hydrogen production, to achieve excess hydrogen output via concurrent electrochemical and chemical redox reactions.
Collapse
Affiliation(s)
- Yue Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Menghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou, 310030, China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Enlai Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Haotian Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Defa Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Zhiyu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| |
Collapse
|
2
|
Cho DK, Lim HW, Haryanto A, Yan B, Lee CW, Kim JY. Intercalation-Induced Irreversible Lattice Distortion in Layered Double Hydroxides. ACS NANO 2024. [PMID: 39037642 DOI: 10.1021/acsnano.4c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Inducing strain in the lattice effectively enhances the intrinsic activity of electrocatalysts by shifting the metal's d-band center and tuning the binding energy of reaction intermediates. NiFe-layered double hydroxides (NiFe LDHs) are promising electrocatalysts for the oxygen evolution reaction (OER) due to their cost-effectiveness and high catalytic activity. The distorted β-NiOOH phase produced by the Jahn-Teller effect under the oxidation polarization is known to exhibit superior catalytic activity, but it eventually transforms to the undistorted γ-NiOOH phase during the OER process. Such a reversible lattice distortion limits the OER activity. In this study, we propose a facile boron tungstate (BWO) anion intercalation method to induce irreversible lattice distortion in NiFe LDHs, leading to significantly enhanced OER activity. Strong interactions with BWO anions induce significant stress on the LDH's metal-hydroxide slab, leading to an expansion of metal-oxygen bonds and subsequent lattice distortion. In situ Raman spectroscopy revealed that lattice-distorted NiFe LDHs (D-NiFe LDHs) stabilize the β-NiOOH phase under the OER conditions. Consequently, D-NiFe LDHs exhibited low OER overpotentials (209 and 276 mV for 10 and 500 mA cm-2, respectively), along with a modest Tafel slope (33.4 mV dec-1). Moreover, D-NiFe LDHs demonstrated excellent stability at 500 mA cm-2 for 50 h, indicating that the lattice distortion of the LDHs is irreversible. The intercalation-induced lattice strain reported in this study can provide a general strategy to enhance the activity of electrocatalysts.
Collapse
Affiliation(s)
- Deok Ki Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Woo Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Andi Haryanto
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Bingyi Yan
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SNU Materials Education/Research Division for Creative Global Leaders, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan Woo Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Jin Young Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. Recent Advances on Transition-Metal-Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207519. [PMID: 36866927 PMCID: PMC10161082 DOI: 10.1002/advs.202207519] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Transition-metal-based layered double hydroxides (TM-LDHs) nanosheets are promising electrocatalysts in the renewable electrochemical energy conversion system, which are regarded as alternatives to noble metal-based materials. In this review, recent advances on effective and facile strategies to rationally design TM-LDHs nanosheets as electrocatalysts, such as increasing the number of active sties, improving the utilization of active sites (atomic-scale catalysts), modulating the electron configurations, and controlling the lattice facets, are summarized and compared. Then, the utilization of these fabricated TM-LDHs nanosheets for oxygen evolution reaction, hydrogen evolution reaction, urea oxidation reaction, nitrogen reduction reaction, small molecule oxidations, and biomass derivatives upgrading is articulated through systematically discussing the corresponding fundamental design principles and reaction mechanism. Finally, the existing challenges in increasing the density of catalytically active sites and future prospects of TM-LDHs nanosheets-based electrocatalysts in each application are also commented.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Yaoyu Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Zhikeng Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Biying Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Meng Chen
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Guoqing Guan
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|