1
|
Li R, Song P, Ji Z, Zhou H, Shen X, Kong L, Yuan A. Flexible Ti 3C 2T x MXene Film Coupled with Defect-Rich MoO 3 Spacer-Contributor toward High-Performance Wearable Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412250. [PMID: 40026081 DOI: 10.1002/smll.202412250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Indexed: 03/04/2025]
Abstract
MXene film-derived flexible supercapacitors have shown great application foreground for wearable electronics, but the capacitive characteristics, especially when faced with mechanical deformations, are not satisfactory. Herein, a new kind of flexible electrode, MX/D-MoO3, is developed by using Ti3C2Tx MXene film (MX) and defect-rich MoO3 (D-MoO3) as the "main body" and "spacer-contributor", respectively. Results indicate that, with D-MoO3 intercalation, notably enlarged layer spacing of Ti3C2Tx nanosheets and boosted electrochemical active sites are fulfilled, which have facilitated wondrous property increases of 342% and 239% when compared to raw MX and MX/MoO3, respectively. Particularly, MX/D-MoO3-60 has a high specific capacitance of 2734.3 mF cm-2 at 1 mA cm-2, which surpasses most of the counterparts reported thus far. The MX/D-MoO3-60-based all-solid-state supercapacitor presents the largest energy density of 96.3 µWh cm-2 at 205.9 µW cm-2 and an outstanding power density of 1871.4 µW cm-2 at 18.6 µWh cm-2. Meanwhile, impressive stability with capacitance retention of 91.8% after 5 000 cycles and great mechanical flexibility with capacitance retention of 90.3% under bending angles from 0 to 180° are also exhibited. The superior properties and facile preparation endow MX/D-MoO3-60 with promising applications in wearable energy storage.
Collapse
Affiliation(s)
- Ruixue Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Peng Song
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhenyuan Ji
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hu Zhou
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiaoping Shen
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Lirong Kong
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Aihua Yuan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| |
Collapse
|
2
|
Wei S, Wan C, Li X, Jia S, Chen R, He G, Wu Y. Top-Down Strategy Enabling Elastic Wood Nanocarbon Sponges with Wrinkled Multilayer Structure and High Compressive Strength for High-Performance Compressible Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410397. [PMID: 39876701 PMCID: PMC11923987 DOI: 10.1002/advs.202410397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Indexed: 01/30/2025]
Abstract
3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging. Here, a superelastic wood nanocarbon sponge (WNCS) with a wrinkled multilayer structure is developed via a facile "top-down" design on natural wood. These unique wrinkled nanolayers effectively alleviate stress concentration through elastic deformation, resulting in a high compressive strength of 580.6 kPa at 70% reversible strain. The significantly increased specific surface area, coupled with abundant micro-mesopores and highly graphitized nanocarbon, promotes rapid ion/electron transport, enabling the WNCS to achieve an ultrahigh capacitance of 4.21 F cm-2 at 1 mA cm-2, along with excellent cyclic stability and rate capability. Furthermore, an asymmetric supercapacitor (ASC) using a WNCS anode and a NiCo-layered double hydroxide cathode retains 71.8% of its initial capacitance after 1000 compression cycles and withstands stress up to 1.03 MPa without capacitance degradation. This sustainable, cost-effective WNCS shows great promise for flexible, compressible, and wearable electrochemical energy systems.
Collapse
Affiliation(s)
- Song Wei
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H0A, UK
| | - Caichao Wan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shanshan Jia
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Ruwei Chen
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H0A, UK
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H0A, UK
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
3
|
Yang P, Li Z, Zhang D, Yang K, Ling Y, Zhang T, Quan Q, Liu C, Chen W, Zhou X. MXene film electrodes with high mechanical strength, graded ion channels and high pseudocapacitive activity enabled by lignin-containing cellulose fibers. Int J Biol Macromol 2024; 279:135476. [PMID: 39260646 DOI: 10.1016/j.ijbiomac.2024.135476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Cellulose nanofiber (CNF) has been widely used in MXene film electrodes to improve its mechanical properties and rate capability for supercapacitors. However, all the above enhancements are obtained with inevitably sacrificing the capacitance, because of the non-electrochemically-active characteristic of CNF. Herein, to address this issue, lignin-containing cellulose fibers (LCNF) is innovatively used to substitute CNF. Specifically, LCNF play a role as a bridge to significantly reinforce mechanical strength of LCNF/MXene film electrode (LM) by binding the adjacent MXene nanosheets, reaching a tensile strength of 34.2 MPa. Lignin in LCNF contributes to pseudocapacitance through the reversible conversion of its quinone/hydro-quinone (Q/QH2), thus yielding an excellent capacitance of 364.4 F g-1 at 1 A g-1. Meanwhile, LCNF has different diameters in which microfibers form a loose structure for LM, nanofibers enlarge d-spacing between adjacent MXene nanosheets, and fibers self-crosslinking creates abundant pores, thus constructing graded channels to achieve an outstanding rate capability of 87 % at 15 A g-1. The fabricated supercapacitor demonstrates a large energy density of 1.8 Wh g-1 at 71.3 W g-1. This work provides a promising approach to decouple the trade-off between electrochemical performance and mechanical properties of MXene film electrodes caused by using CNF, thus obtaining high-performance supercapacitors.
Collapse
Affiliation(s)
- Pei Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Zhao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Daotong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yiying Ling
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Qi Quan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| |
Collapse
|
4
|
Zou X, Song Y, Zhang Y, Xing L, Li P, Cheng J, Feng Y, Wang K, Liu W, Wang J. Calcium alginate/Polyaniline double network aerogel electrode for compressible and high electrochemical performance integrated supercapacitors. Int J Biol Macromol 2024; 282:136995. [PMID: 39476914 DOI: 10.1016/j.ijbiomac.2024.136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
As a new type of energy storage device, supercapacitors have attracted more and more attention due to their excellent performance. However, the current electrode materials have limited specific surface area and cannot meet the needs of high energy storage. The aerogel material is a 3D network structure containing interconnected micro-nano structures, and also has hierarchical pores on the micro, meso and macro scales. The microporous and mesoporous structures can provide high specific surface area, while the macropores provide channels for the entry of active substances. In this study, calcium alginate (CA)/polyaniline (PANI)/reduced graphene oxide (RGO) aerogels based on double network structure with high mechanical property and excellent electrochemical performance are successfully constructed by sol-gel method. Due to the double network structure, the CA/PANI/RGO aerogel exhibits self-supported 3D porous network structures with high surface areas (330.3 m2/g). CA/PANI/RGO composite aerogel electrode shows high specific capacitance (908 F/g at 1 A/g) and excellent rate performance. The initial capacitance of more than 80 % can be maintained after 10,000 times of charge/discharge cycle test. Most importantly, the assembled flexible solid-state supercapacitor has high specific capacitance (885 F/g at 1 A/g) and mechanical flexibility (92.6 % of the capacitance retention after 1000 bending cycles).
Collapse
Affiliation(s)
- Xinquan Zou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yaoting Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yi Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lu Xing
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peiyuan Li
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jinggang Cheng
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yuwei Feng
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Kun Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wenxiu Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jikui Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
5
|
Lei J, Zhang X, Wang J, Yu F, Liang M, Wang X, Bi Z, Shang G, Xie H, Ma J. Interlayer Structure Manipulation of FeOCl/MXene with Soft/Hard Interface Design for Safe Water Production Using Dechlorination Battery Deionization. Angew Chem Int Ed Engl 2024; 63:e202401972. [PMID: 38703075 DOI: 10.1002/anie.202401972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Suffering from the susceptibility to decomposition, the potential electrochemical application of FeOCl has greatly been hindered. The rational design of the soft-hard material interface can effectively address the challenge of stress concentration and thus decomposition that may occur in the electrodes during charging and discharging. Herein, interlayer structure manipulation of FeOCl/MXene using soft-hard interface design method were conducted for electrochemical dechlorination. FeOCl was encapsulated in Ti3C2Tx MXene nanosheets by electrostatic self-assembly layer by layer to form a soft-hard mechanical hierarchical structure, in which Ti3C2Tx was used as flexible buffer layers to relieve the huge volume change of FeOCl during Cl- intercalation/deintercalation and constructed a conductive network for fast charge transfer. The CDI dechlorination system of FeOCl/Ti3C2Tx delivered outstanding Cl- adsorption capacity (158.47 ± 6.98 mg g-1), rate (6.07 ± 0.35 mg g-1 min-1), and stability (over 94.49 % in 30 cycles), and achieved considerable energy recovery (21.14 ± 0.25 %). The superior dechlorination performance was proved to originate from the Fe2+/Fe3+ topochemical transformation and the deformation constraint effect of Ti3C2Tx on FeOCl. Our interfacial design strategy enables a hard-to-soft integration capacity, which can serve as a universal technology for solving the traditional problem of electrode volume expansion.
Collapse
Affiliation(s)
- Jingjing Lei
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Xiaochen Zhang
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Junce Wang
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, P.R. China
| | - Mingxing Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Xinru Wang
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Zhuanfang Bi
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Guangyi Shang
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co. Ltd., Hangzhou, 310003, P. R. China
| | - Jie Ma
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
- School of Civil Engineering, Kashi University, Kashi, 844000, P.R. China
| |
Collapse
|
6
|
Niculescu AG, Mihaiescu B, Bîrcă AC, Moroșan A, Munteanu (Mihaiescu) OM, Vasile BȘ, Hadibarata T, Istrati D, Mihaiescu DE, Grumezescu AM. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels 2024; 10:394. [PMID: 38920940 PMCID: PMC11202994 DOI: 10.3390/gels10060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions. Afterward, dip-coating deposition was utilized to create thin layers of silica-based gels, which were further processed by 15-hour gelation time, solvent transfer, and further CO2 desiccation. A series of physicochemical analyses (XRD, HR-MS FT-ICR, FT-IR, TEM, SEM, and EDS) were performed to characterize the final films and intermediate products. The proposed advanced imaging experimental model for film homogeneity and adsorption characteristics confirmed uniform aerogel film deposition, nanostructured surface, and ability to remove pesticides from contaminated water samples. Based on thorough investigations, it was concluded that the fabricated magnetic aerogel-based thin films are promising candidates for water decontamination and novel solid-phase extraction sample preparation.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alina Moroșan
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Oana Maria Munteanu (Mihaiescu)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
| | - Daniela Istrati
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
7
|
Luo Y, Que W, Tang Y, Kang Y, Bin X, Wu Z, Yuliarto B, Gao B, Henzie J, Yamauchi Y. Regulating Functional Groups Enhances the Performance of Flexible Microporous MXene/Bacterial Cellulose Electrodes in Supercapacitors. ACS NANO 2024; 18:11675-11687. [PMID: 38651298 DOI: 10.1021/acsnano.3c11547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ultrathin MXene-based films exhibit superior conductivity and high capacitance, showing promise as electrodes for flexible supercapacitors. This work describes a simple method to enhance the performance of MXene-based supercapacitors by expanding and stabilizing the interlayer space between MXene flakes while controlling the functional groups to improve the conductivity. Ti3C2Tx MXene flakes are treated with bacterial cellulose (BC) and NaOH to form a composite MXene/BC (A-M/BC) electrode with a microporous interlayer and high surface area (62.47 m2 g-1). Annealing the films at low temperature partially carbonizes BC, increasing the overall electrical conductivity of the films. Improvement in conductivity is also attributed to the reduction of -F, -Cl, and -OH functional groups, leaving -Na and -O functional groups on the surface. As a result, the A-M/BC electrode demonstrates a capacitance of 594 F g-1 at a current density of 1 A g-1 in 3 M H2SO4, which represents a ∼2× increase over similarly processed films without BC (309 F g-1) or pure MXene (298 F g-1). The corresponding device has an energy density of 9.63 Wh kg-1 at a power density of 250 W kg-1. BC is inexpensive and enhances the overall performance of MXene-based film electrodes in electronic devices. This method underscores the importance of functional group regulation in enhancing MXene-based materials for energy storage.
Collapse
Affiliation(s)
- Yijia Luo
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
- Research Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Yi Tang
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, P. R. China
| | - Yunqing Kang
- Research Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Xiaoqing Bin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Zhenwei Wu
- Research Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Brian Yuliarto
- Advanced Functional Materials Laboratory, Engineering Physics Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Bowen Gao
- School of Mechanical and Construction Engineering, Taishan University, Tai'an 271021, Shandong, P. R. China
| | - Joel Henzie
- Research Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
8
|
Jiang S, Lu L, Song Y. Recent Advances of Flexible MXene and its Composites for Supercapacitors. Chemistry 2024; 30:e202304036. [PMID: 38298129 DOI: 10.1002/chem.202304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
MXenes have unique properties such as high electrical conductivity, excellent mechanical properties, rich surface chemistry, and convenient processability. These characteristics make them ideal for producing flexible materials with tunable microstructures. This paper reviews the laboratory research progress of flexible MXene and its composite materials for supercapacitors. And introduces the general synthesis method of MXene, as well as the preparation and properties of flexible MXene. By analyzing the current research status, the electrochemical reaction mechanism of MXene was explained from the perspectives of electrolyte and surface terminating groups. This review particularly emphasizes the composite methods of freestanding flexible MXene composite materials. The review points out that the biggest problem with flexible MXene electrodes is severe self-stacking, which reduces the number of chemically active sites, weakens ion accessibility, and ultimately lowers electrochemical performance. Therefore, it is necessary to composite MXene with other electrode materials and design a good microstructure. This review affirms the enormous potential of flexible MXene and its composite materials in the field of supercapacitors. In addition, the challenges and possible improvements faced by MXene based materials in practical applications were also discussed.
Collapse
Affiliation(s)
- Shiben Jiang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Linghong Lu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Yan Song
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| |
Collapse
|
9
|
Du C, Wan G, Wu L, Shi S, Zhang Y, Deng Z, Zhang Y, Wei Q, Li L, Wang G. Iron-doped nickel-cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding. J Colloid Interface Sci 2024; 654:486-494. [PMID: 37862800 DOI: 10.1016/j.jcis.2023.10.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
The development of flexible and wearable electronics subjects to the limited energy density and accompanying electromagnetic pollution. With a high theoretical specific capacity, nickel-cobalt bimetallic phosphide (NiCoP) is considered to be potential cathode materials for supercapacitor. However, the pristine NiCoP fails to display excellent electrochemical performance due to its inferior rate performance and cycling stability. Herein, we design Fe doped NiCoP nanowire arrays on carbon cloth (Fe-NiCoP/CC) as the cathode for supercapacitors. The introduced Fe doping enable to increase in the electronic conductivity and enhance the adsorption of OH-, supported by the density functional theory (DFT) analysis. As a result, Fe-NiCoP/CC electrode displays a high areal capacity of 3.18 F cm-2 at 1 mA cm-2, superb rate capability (86.3 % capacity retention at 20 mA cm-2) and outstanding structure stability, superior to the NiCo/CC, FeNiCo/CC, and NiCoP/CC counterparts. Moreover, the assembled Fe-NiCoP/CC||VN/CNT/CC hybrid supercapacitor (HSC) device delivers a high energy density of 176.9 μWh cm-2 at the power density of 750 μW cm-2. More importantly, the designed electrodes and assembled HSC device exhibits excellent electromagnetic interference (EMI) shielding performance. This design concept presented in this paper can provide insights into the construction of multifunctional and high-performance flexible electronic devices.
Collapse
Affiliation(s)
- Changlong Du
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, Hainan 570228, China
| | - Gengping Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, Hainan 570228, China.
| | - Lihong Wu
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, Hainan 570228, China
| | - Shaohua Shi
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Yan Zhang
- School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Zhen Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Ying Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Qiyi Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Lianrui Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, Hainan 570228, China
| | - Guizhen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China; School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
10
|
Ansari SN, Saraf M, Abbas Z, Mobin SM. Heterostructures of MXenes and transition metal oxides for supercapacitors: an overview. NANOSCALE 2023; 15:13546-13560. [PMID: 37551924 DOI: 10.1039/d3nr01755a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
MXenes are a large family of two dimensional (2D) materials with high conductivity, redox activity and compositional diversity that have become front-runners in the materials world for a diverse range of energy storage applications. High-performing supercapacitors require electrode materials with high charge storage capabilities, excellent electrical conductivity for fast electron transfer, and the ability of fast charging/discharging with good cyclability. While MXenes show many of these properties, their energy storage capability is limited by a narrow electrochemically stable potential window due to irreversible oxidation under anodic potentials. Although transition metal oxides (TMOs) are often high-capacity materials with high redox activity, their cyclability and poor rate performance are persistent challenges because of their dissolution in aqueous electrolytes and mediocre conductivity. Forming heterostructures of MXenes with TMOs and using hybrid electrodes is a feasible approach to simultaneously increase the charge storage capacity of MXenes and improve the cyclability and rate performance of oxides. MXenes could also act as conductive substrates for the growth of oxides, which could perform as spacers to stop the aggregation of MXene sheets during charging/discharging and help in improving the supercapacitor performance. Moreover, TMOs could increase the interfacial contact between MXene sheets and help in providing short-diffusion ion channels. Hence, MXene/TMO heterostructures are promising for energy storage. This review summarizes the most recent developments in MXene/oxide heterostructures for supercapacitors and highlights the roles of individual components.
Collapse
Affiliation(s)
- Shagufi Naz Ansari
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
- Department of Chemistry, School of Engineering, Presidency University, Bangalore, 560064, India
| | - Mohit Saraf
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Zahir Abbas
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
- Center for Advance Electronics, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
11
|
Li L, Xie F, Wu H, Zhu Y, Zhang P, Li Y, Li H, Zhao L, Zhu G. N-Doped Porous Carbon-Nanofiber-Supported Fe 3C/Fe 2O 3 Nanoparticles as Anode for High-Performance Supercapacitors. Molecules 2023; 28:5751. [PMID: 37570722 PMCID: PMC10421154 DOI: 10.3390/molecules28155751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Exploring anode materials with an excellent electrochemical performance is of great significance for supercapacitor applications. In this work, a N-doped-carbon-nanofiber (NCNF)-supported Fe3C/Fe2O3 nanoparticle (NCFCO) composite was synthesized via the facile carbonizing and subsequent annealing of electrospinning nanofibers containing an Fe source. In the hybrid structure, the porous carbon nanofibers used as a substrate could provide fast electron and ion transport for the Faradic reactions of Fe3C/Fe2O3 during charge-discharge cycling. The as-obtained NCFCO yields a high specific capacitance of 590.1 F g-1 at 2 A g-1, superior to that of NCNF-supported Fe3C nanoparticles (NCFC, 261.7 F g-1), and NCNFs/Fe2O3 (NCFO, 398.3 F g-1). The asymmetric supercapacitor, which was assembled using the NCFCO anode and activated carbon cathode, delivered a large energy density of 14.2 Wh kg-1 at 800 W kg-1. Additionally, it demonstrated an impressive capacitance retention of 96.7%, even after 10,000 cycles. The superior electrochemical performance can be ascribed to the synergistic contributions of NCNF and Fe3C/Fe2O3.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Fengting Xie
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Heyu Wu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Yuanyuan Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023, China
| | - Pinghua Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hengzheng Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Litao Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China; (L.L.); (F.X.); (H.W.); (Y.Z.); (Y.L.); (H.L.); (L.Z.)
| |
Collapse
|
12
|
Chen Z, Fu X, Liu R, Song Y, Yin X. Fabrication, Performance, and Potential Applications of MXene Composite Aerogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2048. [PMID: 37513059 PMCID: PMC10383360 DOI: 10.3390/nano13142048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Aerogel, known as one of the remarkable materials in the 21st century, possesses exceptional characteristics such as high specific surface area, porosity, and elasticity, making it suitable for a diverse range of applications. In recent years, MXene-based aerogels and MXene composite aerogels as functional materials have solved some limitations of traditional aerogels, such as improving the electrical conductivity of biomass and silicon aerogels, further improving the energy storage capacity of carbon aerogels, enhancing polymer-based aerogels, etc. Consequently, extensive research efforts have been dedicated to investigating MXene-based aerogels, positioning them at the forefront of material science studies. This paper provides a comprehensive review of recent advancements in the preparation, properties, and applications of MXene-based composite aerogels. The primary construction strategies employed (including direct synthesis from MXene dispersions and incorporation of MXene within existing substrates) for fabricating MXene-based aerogels are summarized. Furthermore, the desirable properties (including their applications in electrochemistry, electromagnetic shielding, sensing, and adsorption) of MXene composite aerogels are highlighted. This paper delves into a detailed discussion on the fundamental properties of composite aerogel systems, elucidating the intricate structure-property relationships. Finally, an outlook is provided on the opportunities and challenges for the mass production and functional applications of MXene composite aerogels in the field of material engineering.
Collapse
Affiliation(s)
- Zhicheng Chen
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Xinming Fu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Rui Liu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Yiheng Song
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Xianze Yin
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|