1
|
Pykal M, Nociarová J, Řeha D, Filo J, Šebela M, Zajíček P, Paloncýová M, Olla C, Mocci F, Cappai A, Carbonaro CM, Baďura Z, Zdražil L, Zbořil R, Rogach AL, Medveď M, Otyepka M. Thermodynamics and kinetics of early stages of carbon dot formation: a case of citric acid and ethylenediamine reaction. NANOSCALE 2025; 17:7780-7789. [PMID: 39964206 DOI: 10.1039/d4nr04420g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Owing to their extraordinary photophysical properties, carbon dots (CDs) have found applications across various fields, including bioimaging, sensing, and environmental research. Despite huge application potential, the fabrication of CDs still lacks the desired control at the molecular level, and precise structural regulation towards property-tailored CDs remains elusive. The mechanistic details of nucleation, growth, and carbonization processes leading to CDs are still unknown, with key thermodynamic and kinetic parameters yet to be revealed. Herein, we performed quantum chemical calculations of explicitly micro-hydrated reaction systems to thoroughly explore the mechanism of a prototypical reaction of citric acid and ethylenediamine. The theoretical results showed activation barriers and thermodynamics along the reaction pathway, thus helping identify key heterocyclic intermediates and cyclization products. The cyclization and condensation reactions were further simulated via a reactive molecular dynamics protocol, suggesting potential growth scenarios and generating plausible structures for further exploration of the polymerization and carbonization processes. The theoretical calculations were cross-validated with NMR and MALDI-TOF measurements. The data obtained provide a comprehensive deterministic insight into the initial stages of CD formation, revealing new reaction intermediates and pathways, and rationally predicting the formation of specific structural arrangements of premature CDs. The presented deterministic approach represents an important step towards rational bottom-up design of these unique fluorescence systems.
Collapse
Affiliation(s)
- Martin Pykal
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Jela Nociarová
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovak Republic
| | - David Řeha
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Petr Zajíček
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Chiara Olla
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | | | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Lukáš Zdražil
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Andrey L Rogach
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovak Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
2
|
Nandi N, Sarkar P, Barnwal N, Sahu K. Intricacies of Carbon Dot Photoluminescence for Emerging Applications: A Review. Chem Asian J 2025; 20:e202401470. [PMID: 39907296 DOI: 10.1002/asia.202401470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Discovered only in 2004, carbon dots (CDs) have already traversed a long journey, generating many promising research directions. Its cheapness, ease of synthesis, high water-solubility, tunable emission, and excellent biocompatibility make it a single-point solution to many problems, and tremendous efforts were invested into understanding the structure-property-function relationship, which eases the engineering of the CD properties suitable for a desired application. From the usual random choice of precursors or carbon materials as a starting point in the early days, more systematic approaches are now available for choosing proper starting materials and appropriate experimental conditions (solvent medium, reaction temperature, reaction duration, pH, etc) to customize its photoluminescence. The presence of impurities has a crucial role in the outcome and applicability of photoluminescence. Recently, a significant focus has been on the long-wavelength emissive CDs, particularly in the red to near-infrared (NIR) regions, for better penetration into live cells and to circumvent autofluorescence problems. Proper design can harvest phosphorescence from CDs. Many excellent reviews are available, focusing on different facets of CD prospects. Hence, we will only highlight the importance of the optical properties of CDs and ways to modulate them. We will mention some of the new works that have appeared in the last five years.
Collapse
Affiliation(s)
- Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Neha Barnwal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
3
|
Wen X, Wang C, Liang X, Liu S. Carboxyl-functionalized multifunctional red-emitting carbon quantum dots as an ideal biomaterial. Biomed Mater 2024; 20:015027. [PMID: 39671789 DOI: 10.1088/1748-605x/ad9f05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Carbon quantum dots (CQDs) have been developed into a popular nanomaterial due to their abundant surface state, good biocompatibility, and excellent antimicrobial properties. However, CQDs with multiple functions, such as being red-emitting, having good antibacterial activity, and having excellent pH sensitivity, have rarely been reported. In this work, red-emitting CQDs (R-CQDs) with excellent optical properties and antimicrobial activity were prepared by a simple green hydrothermal method. In antimicrobial applications, the R-CQDs featured good antibacterial activity due to the generation of reactive oxygen species, indicating excellent photodynamic antimicrobial ability. In addition, the R-CQDs showed fine pH sensitivity, giving them potential as pH sensors to monitor the pH of wounds in real time. The promising potential application of R-CQDs for cell imaging was also demonstrated. In summary, we offer R-CQDs with good antibacterial and pH sensitivity as a potential nanomaterial for pH and antimicrobial monitoring of wounds, shedding light on the biomedical field.
Collapse
Affiliation(s)
- Xi Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032 Anhui, People's Republic of China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
| | - Chen Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032 Anhui, People's Republic of China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
| | - Xinyu Liang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032 Anhui, People's Republic of China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Institute of Dermatology, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei 230032 Anhui, People's Republic of China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei 230032 Anhui, People's Republic of China
| |
Collapse
|
4
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Jin G, Cui Y, Wang T, Liu S, Xue S, Liu S, Ye Q, Zhou F, Liu W. Dynamic Directional Ultrasonically In Situ-Generated N,S-Codoped Carbon Dots in Poly(ethylene glycol) for Improved Tribological Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39896-39905. [PMID: 39013120 DOI: 10.1021/acsami.4c09011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The dispersion stability of nanomaterials in lubricants significantly influences tribological performance, yet their addition as lubricant additives often presents challenges in secondary dispersion. Here, we present a straightforward method for in situ preparation of N,S-codoped CDs (N,S-CDs)-based lubricants using heterocyclic aromatic hydrocarbons containing N/S elements in poly(ethylene glycol) (PEG) base oil by a directional ultrasound strategy. Two types of N,S-CDs were successfully prepared via the directional ultrasound treatment of PEG with benzothiazole (BTA) and benzothiadiazole (BTH) separately. The resultant N,S-CDs have a uniform distribution of N and S elements and maintain good colloidal dispersion stability in PEG even after 9 months of storage. The N,S-CDs can enter the surface gap of the friction pairs and then induce a tribochemical reaction. Benefiting from the synergistic effect of N and S activating elements, a robust and stable protective film consisting of iron sulfides, iron oxides, carbon nitrides, and amorphous carbonaceous compounds is formed, thus endowing N,S-CDs-based lubricants with improved antiwear and friction-reducing performance. Compared with pure PEG, the coefficient of friction (COF) of the N,S-CDs(BTH)-based lubricant decreased to 0.108 from 0.292, accompanied by a 91.2% reduction in wear volume, and the maximum load carrying capacity increased to 450 from 150 N.
Collapse
Affiliation(s)
- Guangkai Jin
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yuhong Cui
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Tiantian Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Sha Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shenghua Xue
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Meng X, Wang M, Lin J, Wang L, Liu J, Song Y, Jing Q, Zhao H. Intermediate aminophenol enables hectogram-scale synthesis of highly bright red carbon quantum dots under ambient conditions. Chem Sci 2024; 15:9806-9813. [PMID: 38939133 PMCID: PMC11206295 DOI: 10.1039/d4sc02331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Carbon quantum dots (C-dots) have developed into potential nanomaterials for lighting, catalysis and bioimaging because of their excellent optical properties and good biocompatibility. However, it is still a challenge to produce efficient red emitting carbon quantum dots (R-C-dots) due to their obscure formation mechanism. This work offered a method to reveal the formation process from the precursor o-phenylenediamine (o-PDA) to R-C-dots. Different from traditional hydrothermal reactions, R-C-dots were synthesized at relatively low temperature and ambient pressure. The pre-oxidation intermediate aminophenol played an important role in the synthesis of R-C-dots, which further cross-linked and polymerized with o-PDA in an acid environment to form R-C-dots. The obtained R-C-dots had a photoluminescence quantum yield of up to 33.26% and excellent two-photon fluorescence properties. A white light-emitting diode (WLED) based on R-C-dots as the red phosphor exhibited standard white light CIE color coordinates of (0.33, 0.33) with a correlated color temperature of 5342 K and a high color rendering index (CRI) of 94.5. The obtained rendering index is the highest value among WLEDs with color coordinates of (0.33, 0.33) based on C-dots. This work provides a new perspective for the controllable large-scale synthesis of red C-dots.
Collapse
Affiliation(s)
- Xiangyong Meng
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Maorong Wang
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Jishuai Lin
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Lihua Wang
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Jin Liu
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Yang Song
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Qiang Jing
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Haiguang Zhao
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| |
Collapse
|
7
|
Scott JM, Dale SG, McBroom J, Gould T, Li Q. Size Isn't Everything: Geometric Tuning in Polycyclic Aromatic Hydrocarbons and Its Implications for Carbon Nanodots. J Phys Chem A 2024; 128:2003-2014. [PMID: 38470339 DOI: 10.1021/acs.jpca.3c07416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent developments in light-emitting carbon nanodots and molecular organic semiconductors have seen renewed interest in the properties of polycyclic aromatic hydrocarbons (PAHs) as a family. The networks of delocalized π electrons in sp2-hybridized carbon grant PAHs light-emissive properties right across the visible spectrum. However, the mechanistic understanding of their emission energy has been limited due to the ground state-focused methods of determination. This computational chemistry work, therefore, seeks to validate existing rules and elucidate new features and characteristics of PAHs that influence their emissions. Predictions based on (time-dependent) density functional theory account for the full 3-dimensional electronic structure of ground and excited states and reveal that twisting and near-degeneracies strongly influence emission spectra and may therefore be used to tune the color of PAHs and, hence, carbon nanodots. We particularly note that the influence of twisting goes beyond torsional destabilization of the ground-state and geometric relaxation of the excited state, with a third contribution associated with the electric transition dipole. Symmetries and peri-condensation may also have an effect, but this could not be statistically confirmed. In pursuing this goal, we demonstrate that with minimal changes to molecular size, the entire visible spectrum may be spanned by geometric modification alone; we have also provided a first estimate of emission energy for 35 molecules currently lacking published emission spectra as well as clear guidelines for when more sophisticated computational techniques are required to predict the properties of PAHs accurately.
Collapse
Affiliation(s)
- James M Scott
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| | - Stephen G Dale
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- The Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - James McBroom
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Tim Gould
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
8
|
Chen R, Wang Z, Pang T, Teng Q, Li C, Jiang N, Zheng S, Zhang R, Zheng Y, Chen D, Yuan F. Ultra-Narrow-Bandwidth Deep-Red Electroluminescence Based on Green Plant-Derived Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302275. [PMID: 37228040 DOI: 10.1002/adma.202302275] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Deep-red light-emitting diodes (DR-LEDs, >660 nm) with high color-purity and narrow-bandwidth emission are promising for full-color displays and solid-state lighting applications. Currently, the DR-LEDs are mainly based on conventional emitters such as organic materials and heavy-metal based quantum dots (QDs) and perovskites. However, the organic materials always suffer from the complicated synthesis, inferior color purity with full-width at half-maximum (FWHM) more than 40 nm, and the QDs and perovskites still suffer from serious problems related to toxicity. Herein, this work reports the synthesis of efficient and high color-purity deep-red carbon dots (CDs) with a record narrow FWHM of 21 nm and a high quantum yield of more than 50% from readily available green plants. Moreover, an exciplex host is further established using a polymer and small molecular blend, which has been shown to be an efficient strategy for producing high color-purity monochrome emission from deep-red CDs via Förster energy transfer (FET). The deep-red CD-LEDs display high color-purity with Commission Internationale de l'Eclairage (CIE) coordinates of (0.692, 0.307). To the best of the knowledge, this is the first report of high color-purity CD-LEDs in the deep-red region, opening the door for the application of CDs in the development of high-resolution light-emitting display technologies.
Collapse
Affiliation(s)
- Renjing Chen
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Zhibin Wang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Tao Pang
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, College of Science, Huzhou University, Zhejiang, Huzhou, 313000, China
| | - Qian Teng
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chenhao Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Naizhong Jiang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Song Zheng
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Ruidan Zhang
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Yuanhui Zheng
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information, Fuzhou, Fujian, 350116, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Daqin Chen
- College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information, Fuzhou, Fujian, 350116, P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Du F, Yang LP, Wang LL. Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. J Mater Chem B 2023; 11:8117-8135. [PMID: 37555267 DOI: 10.1039/d3tb01329d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, carbon dots (CDs) as newly developed carbon-based nanomaterials due to advantages such as excellent photostability and easy surface functionalization have generated wide application prospects in fields such as biological imaging and chemical sensing. The multicolor emission carbon dots (M-CDs) were acquired through the selection of different carbon source precursors, change of synthesis conditions and synthesis environment. Therefore, the aim of this review is to summarize the latest research progress in polychromatic CDs from the perspectives of synthesis strategies, luminescent mechanisms, luminescent properties and applications. This review focuses on how to prepare MCDs by changing raw materials and synthesis conditions such as reaction temperature, synthesis time, synthesis pH, and synthesis solvent. This review also presents the optical properties of MCDs, concentration effects, solvent effects, pH effects, elemental doping, and surface passivation on them, as well as their creative applications in the field of sensing applications. It is anticipated that this review will serve as a guide for the development of multifunctional M-CDs and inspire future research on controllable design and preparation of M-CDs.
Collapse
Affiliation(s)
- Fangfang Du
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Liu-Pan Yang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Li-Li Wang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|