1
|
Tang Z, Chen D, Li W, Li H, Tu J, Zhang X, Wang B, Yu R. Enhanced oxygen evolution reaction through improved lattice oxygen activity via carbon dots incorporation into MOFs. J Colloid Interface Sci 2025; 685:361-370. [PMID: 39848068 DOI: 10.1016/j.jcis.2025.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Emerging of the lattice oxygen mechanism (LOM) provides a new opportunity for enhancing oxygen evolution reaction (OER) activity. However, its stability suffers from metal cation dissolution and lattice oxygen anionic redox chemistry. In this paper, carbon dots (CDs)-modified nickel-iron MOF (Metal-Organic Framework) nanosheets (NiFe-BDC/CDs) were prepared for efficient OER electrocatalysis. The introduction of CDs promotes the hybridization of the O 2p band in the MOF with the metal 3d band near the Fermi level, leading to improved involvement of lattice oxygen in the oxygen evolution reaction. Additionally, C-M bonds formed between CDs and metal sites in MOF enhanced the stability of electrocatalyst. As results, the prepared NiFe-BDC/CDs electrodes demonstrated a current density of 100 mA cm-2 at overpotentials of 235 and 250 mV in alkaline freshwater and alkaline seawater, respectively, and a remarkable stability in alkaline seawater at 500 mA cm-2 for >100 h. This study provides a simple and versatile strategy for the design of OER electrocatalysts with highly active transition metal-based MOFs.
Collapse
Affiliation(s)
- Zhun Tang
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| | - Delun Chen
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| | - Weiwei Li
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| | - Hai Li
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| | - Jinchun Tu
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
| | - Xiaolin Zhang
- College of Science, Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China.
| | - Bingrong Wang
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China.
| | - Rentong Yu
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
2
|
Qin JX, Shen CL, Zhang WY, Deng Y, Lai SL, Lv CF, Liu H, Zhang YJ, Liu L, Li L, Yang XG, Shan CX. Surface Engineering Enabled Capacitive Gas-Phase Water Molecule Sensors in Carbon Nanodots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414611. [PMID: 40285652 DOI: 10.1002/advs.202414611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/02/2025] [Indexed: 04/29/2025]
Abstract
Gas-phase water molecule sensors are essential in scientific, industrial, and environmental applications, playing a crucial role in ensuring human safety, monitoring pollution, and optimizing processes. However, developing gas-phase water sensors with high sensitivity remains a significant challenge. Herein, the effect of molecular adsorption on capacitive response is explored, and a facile surface engineering strategy to achieve sensitive carbon nanodots (CDs)-based sensors for H2O is demonstrated.hydrophilic raw precursor is utilized to prepare the hydrophilic CDs and further employ these CDs as active media in the capacitive sensors, demonstrating how surface adsorption influences the capacitive response to H2O molecules. By applying surface engineering, the molecular affinity potential of CDs is regulated, resulting in sensors that exhibit a broad detection range from 11% to 98% relative humidity (RH), with a remarkable sensitivity of 3.3 × 105 pF/RH and an impressive response of 1.8 × 108% at 98% RH. These CDs-based sensors present great potential for applications in respiratory monitoring, information exchange, contactless recognition of finger trajectories, etc. The findings unveil the unique influence of molecular affinity on capacitive response, opening new avenues for the design and applications of highly sensitive molecular sensors.
Collapse
Affiliation(s)
- Jin-Xu Qin
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Wu-You Zhang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Deng
- School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Shou-Long Lai
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Fan Lv
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Hang Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Ying-Jie Zhang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Lei Li
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi-Gui Yang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Guo Y, Zhou D, Huang Y, Song X, He W. Constructing Neuron-like Structured NiS 2/MOF Composites with Enhanced Regulation of Electron Transport and Active Sites for Oxygen Evolution. Molecules 2024; 30:80. [PMID: 39795137 PMCID: PMC11721963 DOI: 10.3390/molecules30010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Constructing fast electron transfer pathways and abundant electro-active sites is an effective strategy to improve the oxygen evolution reaction (OER) performance of catalysts. Herein, structural engineering and dual-phase engineering were employed to construct a NiS2 nanoparticle-encapsulated MOF configured with a pseudo-neuronal structure (NiS2/MOF/HT). It was found that the pseudo-neuronal structure, constructed with a carbon nanohorn (CNH) and carbon nanotube (CNT), provided fast electron transfer pathways and abundant exposed active sites. Moreover, the NiS2/MOF/HT composite obtained via partial vulcanization not only inherited the pseudo-neuronal structure but also prevented the aggregation and growth of NiS2 particles. NiS2/MOF composites provide various active sites. With the combination of the promotion of electronic transfer and enrichment of electro-active sites (NiS2, MOF), NiS2/MOF/HT showed excellent performance, whose overpotential at 25 mA cm-2 was reduced by 19.5% compared with MOF/HT.
Collapse
Affiliation(s)
- Yanli Guo
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Di Zhou
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yanyan Huang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaolong Song
- State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wei He
- School of Aeronautics and Astronautics, Sichuan Univeristy, Chengdu 610065, China
| |
Collapse
|
4
|
Cui M, Yuan Y, Wu Y, Che Z, Li P, Yang X, Chen Y, Hu W, Wang J, Wang S, Guo Y, Wu Z. Graphdiyne-Induced CoN/CoS 2 Heterojunction: Boosting Efficiency for Bifunctional Oxygen Electrochemistry in Zinc-Air Batteries. CHEMSUSCHEM 2024; 17:e202400832. [PMID: 38845094 DOI: 10.1002/cssc.202400832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Indexed: 08/09/2024]
Abstract
The performance of zinc-air battery is constrained by the sluggish rate of oxygen electrode reaction, particularly under high current discharge conditions where the kinetic process of the oxygen reduction reaction (ORR) decelerates significantly. To address this challenge, we present a novel phase transition strategy that facilitates the creation of a heteroatom-doped heterointerface (CoN/CoS2). The meticulously engineered CoN/CoS2/NC electrocatalyst displays a superior ORR half-wave potential of 0.87 V and an OER overpotential of 320 mV at 10 mA cm-2. Experimental and computational analysis confirm that the CoN/CoS2 heterostructure optimizes local charge distribution, accelerates electron transfer, and tunes active sites for enhanced catalysis. Notably, this heterojunction improves stability by resisting corrosion and degradation under harsh alkaline conditions, thus demonstrating superior performance and longevity in a custom-made liquid zinc-air battery. This research provides valuable practical and theoretical foundations for designing efficient heterointerfaces in electrocatalysis applications.
Collapse
Affiliation(s)
- Min Cui
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Yanan Yuan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Yue Wu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Zhongmei Che
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Peixuan Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Xiaochen Yang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Yuqi Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Wei Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Jingui Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Shuai Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
- Nankai University, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Tianjin, 300071, P.R. China
| | - Yingshu Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Jinan, 250353, Shandong, P.R. China
| | - Zexing Wu
- Qingdao University of Science and Technology, Key Laboratory of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao, 266042, Shandong, P.R. China
| |
Collapse
|
5
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
6
|
Qin JX, Shen CL, Li L, Liu H, Zhang WY, Yang XG, Shan CX. Broadband Negative Photoconductive Response in Carbon Nanodots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404694. [PMID: 38857532 DOI: 10.1002/adma.202404694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Due to the broadband response and low selectivity of external light, negative photoconductivity (NPC) effect holds great potential applications in photoelectric devices. Herein, different photoresponsive carbon nanodots (CDs) are prepared from diverse precursors and the broadband response from the NPC CDs are utilized to achieve the optoelectronic logic gates and optical imaging for the first time. In detail, the mcu-CDs which are prepared by the microwave-assisted polymerization of citric acid and urea possess the large specific surface area and abundant hydrophilic groups as sites for the adsorption of H2O molecules and thereby present a high conductivity in dark. Meanwhile, the low affinity of mcu-CDs to H2O molecules permits the light-induced desorption of H2O molecules by heat effect and thus endow the mcu-CDs with a low conductivity under illumination. The easy absorption and desorption of H2O molecules contribute to the extraordinary NPC of mcu-CDs. With the broadband NPC response in CDs, the optoelectronic logic gates and flexible optical imaging system are established, achieving the applications of "NOR" or "NAND" logic operations and high-quality optical images. These findings unveil the unique optoelectronic properties of CDs, and have the potential to advance the applications of CDs in optoelectronic devices.
Collapse
Affiliation(s)
- Jin-Xu Qin
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Lei Li
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Hang Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Wu-You Zhang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi-Gui Yang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| |
Collapse
|
7
|
Cao M, Li Y, Cao Y, Wen Y, Li B, Shen Q, Gu W. Rational Construction of a 3D Self-Supported Electrode Based on ZIF-67 and Amorphous NiCoP for an Enhanced Oxygen Evolution Reaction. Inorg Chem 2024; 63:14062-14073. [PMID: 39014989 DOI: 10.1021/acs.inorgchem.4c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of efficient and Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is an urgent requirement in the field of electrochemical water splitting. The electrocatalytic performance of the OER can be greatly enhanced by the synergistic combination of zeolite imidazolate frameworks (ZIFs) and transition-metal phosphides, both of which individually exhibit promising capabilities in this regard. In this study, a novel amorphous NiCoP deposited on ZIF-67 sheets supported on Ni foam (labeled as NiCoP/ZIF-67/NF) as an OER electrocatalytic material was successfully synthesized using a simple, secure, and time-efficient two-step strategy. The experimental results demonstrate that NiCoP/ZIF-67/NF possesses a large active surface area with abundant active sites. Also, the synergistic effect and interaction between NiCoP and ZIF-67, as well as between Ni and Co within NiCoP, effectively enhance its electrochemical performance under alkaline conditions. Consequently, NiCoP/ZIF-67/NF exhibits outstanding catalytic activity for OER with an overpotential (η) of 175 mV at a current density of 10 mA cm-2 and a long-term stability over 40 h at 20 mA cm-2 in a 1.0 M KOH electrolyte. The corresponding analyses suggest that the real active sites responsible for the OER are identified as NiOOH and CoOOH species within the structure of NiCoP/ZIF-67/NF. Additionally, the catalytic function and stability of ZIF-67 toward the OER under alkaline conditions were also briefly discussed. This work provides a novel catalytic material for the OER along with a facile strategy to fabricate superior, efficient, and noble metal-free catalysts suitable for energy-related applications.
Collapse
Affiliation(s)
- Mengya Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanrong Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijia Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yusong Wen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Shen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen Gu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Zhou H, Gu S, Lu Y, Zhang G, Li B, Dou F, Cao S, Li Q, Sun Y, Shakouri M, Pang H. Stabilizing Ni 2+ in Hollow Nano MOF/Polymetallic Phosphides Composites for Enhanced Electrochemical Performance in 3D-Printed Micro-Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401856. [PMID: 38529841 DOI: 10.1002/adma.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Polymetallic phosphides exhibit favorable conductivities. A reasonable design of nano-metal-organic frame (MOF) composite morphologies and in situ introduction of polymetallic phosphides into the framework can effectively improve electrolyte penetration and rapid electron transfer. To address existing challenges, Ni, with a strong coordination ability with N, is introduced to partially replace Co in nano-Co-MOF composite. The hollow nanostructure is stabilized through CoNi bimetallic coordination and low-temperature controllable polymetallic phosphide generation rate. The Ni, Co, and P atoms, generated during reduction, effectively enhance electron transfer rate within the framework. X-ray absorption fine structure (XAFS) characterization results further confirm the existence of Ni-N, Ni-Ni, and Co-Co structures in the nanocomposite. The changes in each component during the charge-discharge process of the electrochemical reactions are investigated using in situ X-ray diffraction (XRD). Theoretical calculations further confirm that P can effectively improve conductivity. VZNPGC//MXene MSCs, constructed with active materials derived from the hollow nano MOF composites synthesized through the Ni2+ stabilization strategy, demonstrate a specific capacitance of 1184 mF cm-2, along with an energy density of 236.75 µWh cm-2 (power density of 0.14 mW cm-2). This approach introduces a new direction for the synthesis of highly conductive nano-MOF composites.
Collapse
Affiliation(s)
- Huijie Zhou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shunyu Gu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yibo Lu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Bing Li
- Tourism Cooking Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Fei Dou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shuai Cao
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Qian Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yangyang Sun
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Huan Pang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
9
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
10
|
Wang J, Yuan L, Zhang P, Mao J, Fan J, Zhang XL. Advances in zeolitic-imidazolate-framework-based catalysts for photo-/electrocatalytic water splitting, CO 2 reduction and N 2 reduction applications. NANOSCALE 2024; 16:7323-7340. [PMID: 38511283 DOI: 10.1039/d3nr06411e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Harnessing electrical or solar energy for the renewable production of value-added fuels and chemicals through catalytic processes (such as photocatalysis and electrocatalysis) is promising to achieve the goal of carbon neutrality. Owing to the large number of highly accessible active sites, highly porous structure, and charge separation/transfer ability, as well as excellent stability against chemical and electrochemical corrosion, zeolite imidazolate framework (ZIF)-based catalysts have attracted significant attention. Strategic construction of heterojunctions, and alteration of the metal node and the organic ligand of the ZIFs effectively regulate the binding energy of intermediates and the reaction energy barriers that allow tunable catalytic activity and selectivity of a product during reaction. Focusing on the currently existing critical issues of insufficient kinetics for electron transport and selective generation of ideal products, this review starts from the characteristics and physiochemical advantages of ZIFs in catalytic applications, then introduces promising regulatory approaches for advancing the kinetic process in emerging CO2 reduction, water splitting and N2 reduction applications, before proposing perspective modification directions.
Collapse
Affiliation(s)
- Jiaorong Wang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Lihong Yuan
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Pan Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Xiao Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| |
Collapse
|
11
|
Yin H, Liu X, Wang L, Isimjan TT, Cai D, Yang X. Real Active Site Identification of Co/Co 3O 4 Anchoring Ni-MOF Nanosheets with Fast OER Kinetics for Overall Water Splitting. Inorg Chem 2024; 63:7045-7052. [PMID: 38569164 DOI: 10.1021/acs.inorgchem.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Doping metals and constructing heterostructures are pivotal strategies to enhance the electrocatalytic activity of metal-organic frameworks (MOFs). Nevertheless, effectively designing MOF-based catalysts that incorporate both doping and multiphase interfaces poses a significant challenge. In this study, a one-step Co-doped and Co3O4-modified Ni-MOF catalyst (named Ni NDC-Co/CP) with a thickness of approximately 5.0 nm was synthesized by a solvothermal-assisted etching growth strategy. Studies indicate that the formation of the Co-O-Ni-O-Co bond in Ni NDC-Co/CP was found to facilitate charge density redistribution more effectively than the Co-O-Ni bimetallic synergistic effect in NiCo NDC/CP. The designating Ni NDC-Co/CP achieved superior oxygen evolution reaction (OER) activity (245 mV @ 10 mA cm-2) and robust long stability (100 h @ 100 mA cm-2) in 1.0 M KOH. Furthermore, the Ni NDC-Co/CP(+)||Pt/C/CP(-) displays pregnant overall water splitting performance, achieving a current density of 10 mA cm-2 at an ultralow voltage of 1.52 V, which is significantly lower than that of commercial electrolyzer using Pt/C and IrO2 electrode materials. In situ Raman spectroscopy elucidated the transformation of Ni NDC-Co to Ni(Co)OOH under an electric field. This study introduces a novel approach for the rational design of MOF-based OER electrocatalysts.
Collapse
Affiliation(s)
- Haoran Yin
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xinqiang Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dandan Cai
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
12
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
13
|
Jia X, Gao F, Yang G, Wang YY. Designing Different Heterometallic Organic Frameworks by Heteroatom and Second Metal Doping Strategies for the Electrocatalytic Oxygen Evolution Reaction. Inorg Chem 2024; 63:5664-5671. [PMID: 38484386 DOI: 10.1021/acs.inorgchem.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Metal-organic frameworks (MOFs) are considered one of the most significant electrocatalysts for the sluggish oxygen evolution reaction (OER). Hence, a series of novel N,S-codoped Ni-based heterometallic organic framework (HMOF) (NiM-bptz-HMOF, M = Co, Zn, and Mn; bptz = 2,5-bis((3-pyridyl)methylthio)thiadiazole) precatalysts are constructed by the heteroatom and second metal doping strategies. The effective combination of the two strategies promotes electronic conductivity and optimizes the electronic structure of the metal. By regulation of the type and proportion of metal ions, the electrochemical performance of the OER can be improved. Among them, the optimized Ni6Zn1-bptz-HMOF precatalyst exhibits the best performance with an overpotential of 268 mV at 10 mA cm-2 and a small Tafel slope of 72.5 mV dec-1. This work presents a novel strategy for the design of modest heteroatom-doped OER catalysts.
Collapse
Affiliation(s)
- Xiaoqing Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Fei Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
14
|
Qin K, Zhu W, Wang M, Wu J, Ma M, Chen J, Liao F, Kang Z, Shao M. Carbon dots tailoring the interfacial proton and charge transfer of iridium nanowires with stress strain for boosting bifunctional hydrogen catalysis. J Colloid Interface Sci 2024; 653:434-442. [PMID: 37722172 DOI: 10.1016/j.jcis.2023.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The effective harnessing of hydrogen energy relies on the development of bifunctional electrocatalysts that facilitate hydrogen evolution/oxidation reactions (HER/HOR) with high catalytic activity. The design of such electrocatalysts requires the consideration of not only the volcano relationship with hydrogen binding energy (HBE) or hydrogen adsorption Gibbs free energy (ΔGH) but also the regulation of catalytic kinetics such as interfacial proton/electron transfer. In this work, unique one-dimensional iridium nanowires with compressive stress are successfully prepared and combined with carbon dots (Ir NWs/CDs). Acting as an electrocatalyst for HER in 0.5 M H2SO4, the optimal Ir NWs/CDs only requires an 18 mV overpotential to achieve a current density of -10 mA cm-2. Furthermore, the optimal Ir NWs/CDs shows high HOR performance with a mass activity (@ 50 mV versus RHE) 1.5 times that of 20% Pt/C and excellent anti-CO toxicity ability which is twice the level of the PtRu/C catalyst. Ir NWs/CDs exhibit enhanced HER/HOR activity due to (1) the appropriate modulation of the binding energy to hydrogen intermediate facilitated by the compressive stress applied to the Ir structure and (2) the improved proton/electron transfer kinetics by optimizing the electronic properties and surface structures through tailored CDs. This study delivers a new strategy for designing and synthesizing efficient acidic HER/HOR bifunctional catalysts.
Collapse
Affiliation(s)
- Keyang Qin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
15
|
Mao X, Zhao X, Hu H, Li Z, Xiong W, Wei Y, Gao W. One-step hydrothermal method synthesized pH-dependent carbon dots for multistage anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123257. [PMID: 37591019 DOI: 10.1016/j.saa.2023.123257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Work to combat counterfeiting has always been crucial to defending the interests of the public. The usual anti-counterfeiting marks are now fundamental and easy to imitate. Therefore, it is more beneficial to anti-counterfeiting work to develop an anti-counterfeiting mark with more variations to make forgery more difficult. Due to its exceptional stability and fluorescence variability, carbon dots (CDs), a newly developed fluorescent material, offer a wide range of potential applications in anti-counterfeiting. However, there currently needs to be more CD applications in multi-level anti-counterfeiting, and additional issues include high cost and environmental contamination. Therefore, considering the problems of green environmental protection and cost, CDs with excellent green (530 nm) and blue (475 nm, 486 nm) luminescence properties were prepared by a one-step reaction of m-phenylenediamine and glucose. The average fluorescence lifespan is longer than 5 ns, and the optimal quantum yield can reach 37%. Due to the large number of protonated amino groups and surface carboxyl functional groups, the prepared carbon dots exhibit green and blue fluorescence emission modes under acidic and alkaline conditions, respectively. Based on this situation, we produced CD ink and successfully used it for multi-level anti-counterfeiting.
Collapse
Affiliation(s)
- Xiang Mao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, Guangxi, China
| | - Xia Zhao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, Guangxi, China
| | - Hao Hu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, Guangxi, China
| | - Zequan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, Guangxi, China; Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China
| | - Wei Xiong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yujiao Wei
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, Guangxi, China; Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
16
|
Liang W, Wang C, Li J, Yin J, Wu Z, Li S, Du Y. Ir-Doped Bilayer Heterojunction Hollow Nanoboxes for Electrocatalytic Oxygen Evolution. Inorg Chem 2023. [PMID: 38015173 DOI: 10.1021/acs.inorgchem.3c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The fabrication of hollow nanoelectrocatalysts with multilayered heterogeneous interfaces, derived from metal-organic framework (MOF) materials, represents a highly efficient strategy that promotes the oxygen evolution reaction (OER). Within this research, we successfully synthesized a hollow nanobox of Ir-doped ZIF-67@CoFe PBA with bilayer heterointerfaces. The distinctive structure of Ir-ZIF-67@CoFe PBA provides a substantial number of active sites for reaction intermediates, resulting in improved utilization of precious metals. Furthermore, experimental results indicate the outstanding electrocatalytic performance of the optimized Ir-ZIF-67@CoFe PBA, as indicated by a mere 269 mV overpotential at 10 mA·cm-2, accompanied by a small Tafel slope of 80.1 mV·dec-1. Moreover, the Schottky junction formed between the heterojunction and Ir within Ir-ZIF-67@CoFe PBA accelerates the electron-transfer rate, contributing to its exceptional catalytic performance compared to that of a catalyst derived solely from ZIF-67. This distinctive feature of the catalyst holds tremendous application value.
Collapse
Affiliation(s)
- Wanyu Liang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
17
|
Xu S, Ni H, Zhang X, Han C, Qian J. Abundant Surface Defects in Cobalt Hydroxides/Oxyhydroxides Induced by Zinc Species Facilitate Water Oxidation. Inorg Chem 2023; 62:14757-14763. [PMID: 37639239 DOI: 10.1021/acs.inorgchem.3c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The complex process of the anodic oxygen evolution reaction (OER) severely hinders overall water splitting, which further limits the large-scale production and application of hydrogen energy. In this work, one type of bimetallic coordination polymer of ZnCoBTC using the MOF-on-MOF strategy has been synthesized where both Co(II) and Zn(II) cations exhibit the same coordination environment. By applying an electric potential, the predesigned bimetallic MOF precursor can be conveniently degraded into CoOxHy as an active species for efficient OER. Owing to the dissolution of ZnOxHy species, in situ formed disordered defects on the external surface of the catalyst increase the specific surface area as well as expose abundant active materials. Therefore, the ZnCoOxHy nanosheet shows excellent OER performance and reaches an overpotential of only 334 mV at 10 mA cm-2 with a Tafel slope of 66.4 mV dec-1, indicating fast reaction kinetics. The results demonstrate that metals with the same coordination environment can undergo in situ replacement or secondary growth on the pristine MOF, and they can be electrochemically degraded into highly efficient catalysts for future energy applications.
Collapse
Affiliation(s)
- Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Huijie Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaodeng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
18
|
Yu K, Yang H, Zhang H, Huang H, Wang Z, Kang Z, Liu Y, Menezes PW, Chen Z. Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:186. [PMID: 37515724 PMCID: PMC10387036 DOI: 10.1007/s40820-023-01164-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Efficient and durable oxygen evolution reaction (OER) requires the electrocatalyst to bear abundant active sites, optimized electronic structure as well as robust component and mechanical stability. Herein, a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La2O2S prototype is fabricated as a binder-free precatalyst for alkaline OER. The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La, Ni, O, and S species during OER, which assures the adsorption and stabilization of the oxyanion [Formula: see text] onto the surface of the deeply reconstructed porous heterostructure composed of confining NiOOH nanodomains by La(OH)3 barrier. Such coupling, confinement, porosity and immobilization enable notable improvement in active site accessibility, phase stability, mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates. The optimized electrocatalyst delivers exceptional alkaline OER activity and durability, outperforming most of the Ni-based benchmark OER electrocatalysts.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|