1
|
Zhang Z, Zhao X, Miao X, Deng W. Identifying Target Molecule and Trace Amount of the Byproduct by Two-Dimensional Self-Assembly with Different Solution Concentrations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17826-17834. [PMID: 39115458 DOI: 10.1021/acs.langmuir.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Scanning tunneling microscopy (STM) is a powerful way to realize the recognition of self-assembled nanostructures on the atomic scale. In this article, dihexadecyl 6,9-bis((4-(hexadecyloxy)phenyl)ethynyl) phenanthro[9,10-c]thiophene-1,3-dicarboxylate (D-PT) and dihexadecyl 6-bromo-9-((4-(hexadecyloxy) phenyl)ethynyl)phenanthrol[9,10-c]thiophene-1,3-dicarboxylate (S-BrPT) with different substituents were chosen as the target system. D-PT with four side chains as the target molecule and S-BrPT with three side chains and a bromine substituent as the byproduct were mixed in a molar concentration ratio of 20:1. The effect of solution concentration on the molecular self-assembly of the mixture was investigated by STM at the hexadecane/HOPG interface. At high concentrations, only D-PT molecules formed a dimer pattern resulting from the intermolecular van der Waals force and self-adaption. Further diluting the solution, D-PT formed the coexisting dimer and linear structures, in which the linear pattern was formed via solvent coadsorption. At low concentrations, S-BrPT molecules forming N-shaped dimers appeared and filled the linear structure fabricated by D-PT molecules. With further decrease in the concentration, S-BrPT molecules formed N-shaped dimers covering almost half of the surface area, resulting from the C-Br···π and Br···H-C bonds. At very low concentrations, S-BrPT molecules formed N-shaped dimers to arrange the matrix architecture due to the coadsorption of more hexadecane molecules. Density functional theory (DFT) calculations demonstrated that the stronger intermolecular C-Br···π and Br···H-C bonds were significant factors in determining the formation of N-shaped dimers and the stability of this nanostructure. This work enriches the diversity of self-assembled motifs and provides a strategy to characterize different symmetric molecules with trace amounts in a mixed system by STM.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xiaoyang Zhao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Wenli Deng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
2
|
Mu Q, Tian W, Zhang J, Li R, Ji Y. Nanocrystalline Porous Materials for Chiral Separation: Synthesis, Mechanisms, and Applications. Anal Chem 2024; 96:7864-7879. [PMID: 38320090 DOI: 10.1021/acs.analchem.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Qixuan Mu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Wanting Tian
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jiale Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
3
|
Peng X, Zhang Y, Liu X, Qian Y, Ouyang Z, Kong H. From Short- to Long-Range Chiral Recognition on Surfaces: Chiral Assembly and Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307171. [PMID: 38054810 DOI: 10.1002/smll.202307171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Research on chiral behaviors of small organic molecules at solid surfaces, including chiral assembly and synthesis, can not only help unravel the origin of the chiral phenomenon in biological/chemical systems but also provide promising strategies to build up unprecedented chiral surfaces or nanoarchitectures with advanced applications in novel nanomaterials/nanodevices. Understanding how molecular chirality is recognized is considered to be a mandatory basis for such studies. In this review, a series of recent studies in chiral assembly and synthesis at well-defined metal surfaces under ultra-high vacuum conditions are outlined. More importantly, the intrinsic mechanisms of chiral recognition are highlighted, including short/long-range chiral recognition in chiral assembly and two main strategies to steer the reaction pathways and modulate selective synthesis of specific chiral products on surfaces.
Collapse
Affiliation(s)
- Xinchen Peng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinhui Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zuoling Ouyang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
4
|
Zhang Y, Lu J, Zhang Y, Sun S, Xiong W, Chen L, Fu B, Geng J, Niu G, Li S, Yang Y, Sun L, Cai J. On-surface synthesis of Au-C4 and Au-O4 alternately arranged organometallic coordination networks via selective aromatic C-H bond activation. J Chem Phys 2023; 159:184701. [PMID: 37937937 DOI: 10.1063/5.0176065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Selective activation of the C-H bond of aromatic hydrocarbons is significant in synthetic chemistry. However, achieving oriented C-H activation remains challenging due to the poor selectivity of aromatic C-H bonds. Herein, we successfully constructed alternately arranged Au-C4 and Au-O4 organometallic coordination networks through selective aromatic C-H bond activation on Au(111) substrate. The stepwise reaction process of the 5, 12-dibromopyrene 3,4,9, 10-tetracarboxylic dianhydride precursor is monitored by high-resolution scanning tunneling microscopy. Our results show that the gold atoms in C-Au-C organometallic chains play a crucial role in promoting the selective ortho C-H bonds activation and forming Au-C4 coordination structure, which is further demonstrated by a comparative experiment of PTCDA precursor on Au(111). Furthermore, our experiment of 2Br-PTCDA precursor on Cu(111) substrate confirms that copper atoms in C-Cu-C organometallic chains can also assist the formation of Cu-C4 coordination structure. Our results reveal the vital effect of organometallic coordination on selective C-H bond activation of reactants, which holds promising implications for controllable on-surface synthesis.
Collapse
Affiliation(s)
- Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Linghui Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jianqun Geng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Gefei Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shicheng Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yuhang Yang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Li Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
5
|
Peng X, Gan L, Zhai W, Chen X, Deng K, Duan W, Li W, Zeng Q. Two-dimensional self-assembly and co-assembly of two tetracarboxylic acid derivatives investigated by STM. NANOSCALE ADVANCES 2023; 5:4752-4757. [PMID: 37705796 PMCID: PMC10496876 DOI: 10.1039/d3na00389b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
In this work, the two-dimensional self-assembly and co-assembly behaviors of two tetracarboxylic acid derivatives (H4BDETP and H4BTB) were investigated by scanning tunneling microscopy (STM). H4BDETP molecules self-assembled into linear nanostructures, and H4BTB molecules formed lamellar and tetragonal nanostructures. The formation of a H4BDETP/H4BTB co-assembly nanostructure was closely related to the deposition sequence of H4BDETP and H4BTB on highly oriented pyrolytic graphite (HOPG). The introduction of H4BTB into the self-assembly system of H4BDETP resulted in the emergence of the H4BDETP/H4BTB nanostructure, while the addition of H4BDETP had no effect on the self-assembly system of H4BTB and a H4BDETP/H4BTB co-assembly nanostructure was not obtained.
Collapse
Affiliation(s)
- Xuan Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- School of Science, Nanchang Institute of Technology Nanchang 330099 China
| | - Linlin Gan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Department of Chemistry, School of Science, Beijing Jiaotong University Beijing 100044 China
| | - Wenchao Zhai
- School of Science, Nanchang Institute of Technology Nanchang 330099 China
| | - Xiaoling Chen
- School of Science, Nanchang Institute of Technology Nanchang 330099 China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Wubiao Duan
- Department of Chemistry, School of Science, Beijing Jiaotong University Beijing 100044 China
| | - Wei Li
- School of Science, Nanchang Institute of Technology Nanchang 330099 China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|