1
|
Hussain S, AlTowireb SM, Zourob M. Photonic Marvels: Exploring the Self-Assembly of Cellulose Nanocrystals for Sustainable Materials and Beyond. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29021-29046. [PMID: 40356082 DOI: 10.1021/acsami.5c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cellulose nanocrystals (CNCs) are biodegradable, plant-derived colloidal particles that can self-assemble through evaporation-induced self-assembly (EISA) to form photonic films. The ability of CNCs to organize structurally colored films has garnered significant attention as a promising source of sustainable materials. CNCs serve as versatile photonic building blocks for creating biobased colored materials. This review provides a comprehensive overview of the latest advancements in chiral photonic CNC (CPCNC) materials. We delve into the chiral structures of these materials and factors affecting the EISA route, exploring their fundamental principles and bottom-up synthesis techniques. Additionally, various responsive CPCNCs are systematically introduced with a focus on their mechanisms, properties, and potential applications. The review concludes with a discussion of emerging applications, challenges, and future opportunities for CPCNCs. By leveraging the unique properties of CPCNCs within complex responsive polymer networks, we see significant potential for developing innovative physicochemical sensors, structural coatings, and optical devices.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| | - Sara M AlTowireb
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Al-Maather 11533, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Sun W, Zhao X, Zhao X, Meng L, Tang M, Li J, Chang Y, Xiong Y, Wang H, Chen J, Qing G. Significantly enhanced capture efficiency of cell-imprinted material for circulating tumor cells via a flexible and ultra-strong double-armed phenylboronic acid design. Biomaterials 2025; 322:123397. [PMID: 40373516 DOI: 10.1016/j.biomaterials.2025.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Circulating tumor cells (CTC) have been incontrovertibly regarded as a critically essential detection tool within the realm of cancer combat, being decidedly preferred by oncology clinicians and serving as the preponderant primary targets for single-cell analysis. However, several challenges hinder the effective capture of CTC from blood, including their rarity, heterogeneity across cancer types, the complexity of the blood environment, and potential damage to cell viability. Here we design a flexible double-armed phenylboric acid (DPBA) that targets double-branched sialylated glycans (SGs) on the surface of liver CTC. The binding affinity of DPBA (200 nM) is 33 times greater than that of typical phenylboric acid, as confirmed by glycoproteomics analysis demonstrating a strong prevalence for SGs. By copolymerization of DPBA with polyethylene glycol dimethacrylate (PEGDMA), using SMMC-7721 cells as templates, we developed a cell-imprinted hydrogel featuring compact polymeric networks interconnected by both chemical crosslinking and hydrogen bonding. This hydrogel exhibits an ultra-low swelling capacity of 5 %, effectively preserving the nano- and micro-morphologies of cell imprinting. It also demonstrates low protein adhesion, appropriate elasticity and reversibility, as well as satisfactory blood and cell compatibility. The high affinity for double-branched SGs and clear cell imprinting endow the material with precise capture efficiency for CTC, enabling accurate discrimination between liver cancer patients and healthy individuals, with an excellent area under the curve (AUC) of 0.99 and a high classification accuracy of 96 %. Importantly, the captured CTC could be released alive for genomics analysis. The material costs just 1.98 dollars per sample, which is only 1/200th of the typical medical price. This study highlights the significant potential of flexible double-armed molecular design in the development of CTC capture materials, which will promote downstream single-cell multi-proteomics analysis and facilitate early cancer diagnostics.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xinmiao Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, PR China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, Shanghai Tech University, Shanghai, 201210, PR China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan, 430000, PR China
| | - Jiaqi Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Hao Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
3
|
Wang Y, Liu J, Yang M, Wang Y, Jiang L, Wang Y, Hu L. A Recent Review on Stimuli-Responsive Hydrogel Photonic Materials. Macromol Rapid Commun 2025:e2500002. [PMID: 40205957 DOI: 10.1002/marc.202500002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/07/2025] [Indexed: 04/11/2025]
Abstract
The unique optical properties of structural colors found in nature garner significant attention. Inspired by these natural phenomena, scientists develop a variety of stimuli-responsive hydrogel photonic materials with periodic structures that can adjust their structural colors in response to environmental changes. In recent years, the emergence of these materials continue to grow, showcasing potential in various advanced applications. This article reviews the latest advancements in stimuli-responsive hydrogel photonic materials, focusing on their classification, manufacturing methods, and practical applications. It provides detailed descriptions of photonic materials across different dimensions and highlights the unique optical properties derived from their periodic microstructures. Additionally, the article outlines innovative technologies that are employed in creating diverse photonic structures. These materials demonstrate sensitivity to a range of external stimuli, including temperature, humidity, pH, light exposure, and mechanical force, allowing for dynamic adjustments in both structure and performance. Furthermore, the article discusses typical applications of stimuli-responsive hydrogel photonic materials in areas such as visual sensing, anti-counterfeiting technology, and drug delivery. Last, it examines the current challenges faced in the field and offers forward-looking insights regarding the future manufacturing and application of stimuli-responsive hydrogel photonic materials.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jinnan Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mengfan Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yingxue Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Jiang
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, 201100, China
| | - Yang Wang
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, 201100, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Wang X, Xu H, Ning F, Duan S, Hu Y, Ding X, Xu FJ. Improved Cell Adhesion on Self-Assembled Chiral Nematic Cellulose Nanocrystal Films. Macromol Rapid Commun 2025; 46:e2400339. [PMID: 38925556 DOI: 10.1002/marc.202400339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown. Herein, this work presents evidence that the left-handed self-assembled chiral nematic CNC films (L-CNC) significantly improve the adhesion of L929 fibroblasts compared to randomly arranged isotropic CNC films (I-CNC). The fluidic force microscopy-based single-cell force spectroscopy is introduced to assess the cell adhesion forces on the substrates of L-CNC and I-CNC, respectively. With this method, a maximum adhesion force of 133.2 nN is quantified for mature L929 fibroblasts after culturing for 24 h on L-CNC, whereas the L929 fibroblasts exert a maximum adhesion force of 78.4 nN on I-CNC under the same condition. Moreover, the instant SCFS reveals that the integrin pathways are involved in sensing the chirality of substrate surfaces. Overall, this work offers a starting point for the regulation of cell adhesion via the self-assembled nano and micro architecture of chiral nematic CNC films, with potential practical applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanghui Ning
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing, 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Liu Z, Zhang H, Zhou R, Gao H, Wu Y, Wang Y, Wu H, Guan C, Wang L, Tang L, Song P, Xue H, Gao J. Thermoplastic Elastomer-Reinforced Hydrogels with Excellent Mechanical Properties, Swelling Resistance, and Biocompatibility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414339. [PMID: 39921315 PMCID: PMC11948048 DOI: 10.1002/advs.202414339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Strong and tough hydrogels are promising candidates for artificial soft tissues, yet significant challenges remain in developing biocompatible, anti-swelling hydrogels that simultaneously exhibit high strength, fracture strain, toughness, and fatigue resistance. Herein, thermoplastic elastomer-reinforced polyvinyl alcohol (PVA) hydrogels are prepared through a synergistic combination of phase separation, wet-annealing, and quenching. This approach markedly enhances the crystallinity of the hydrogels and the interfacial interaction between PVA and thermoplastic polyurethane (TPU). This strategy results in the simultaneous improvement of the mechanical properties of the hydrogels, achieving a tensile strength of 11.19 ± 0.80 MPa, toughness of 62.67 ± 10.66 MJ m-3, fracture strain of 1030 ± 106%, and fatigue threshold of 1377.83 ± 62.78 J m-2. Furthermore, the composite hydrogels demonstrate excellent swelling resistance, biocompatibility, and cytocompatibility. This study presents a novel approach for fabricating strong, tough, stretchable, biocompatible, and fatigue- and swelling-resistant hydrogels with promising applications in soft tissues, flexible electronics, and load-bearing biomaterials.
Collapse
Affiliation(s)
- Zhanqi Liu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Hechuan Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Ruigang Zhou
- College of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Haiyang Gao
- Department of ChemistryCollege of Liberal Arts and SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Yongchuan Wu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Yuqing Wang
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Haidi Wu
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Cheng Guan
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Ling Wang
- School of Chemistry and Chemical EngineeringAnqing Normal UniversityAnqing246011China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4350Australia
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| | - Jiefeng Gao
- School of Chemistry and Chemical EngineeringYangzhou UniversityNo 180, Road SiwangtingYangzhouJiangsu225002China
| |
Collapse
|
6
|
Lu D, Fang Z, Qiao Z. Mechanochromic and Conductive Gels Based on Cellulose Nanocrystals for Bioinspired Sensing. NANO LETTERS 2025; 25:2850-2857. [PMID: 39917857 DOI: 10.1021/acs.nanolett.4c06047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Soft mechanochromatic materials hold great promise for wearable sensing technologies. Bioinspired photonic crystal structures assembled from cellulose nanocrystals (CNCs) enable dynamic light modulation, providing a vibrant and easily controlled optical platform for real-time detection. This study constructed a CNC-based mechanochromic and conductive gel with a dual-signal response featuring interactive optical and electrical feedback. The mechanical response is achieved through the integration of encapsulating, interpenetration, and crystallization of a soft biocompatible poly(vinyl alcohol) (PVA) sandwich matrix, which propels the deformation of the encased CNC photonic crystal core, leading to dynamic changes in conductivity and color. The material exhibits the capability of detecting dynamic tensile/compressive strains (up to 130%/49% along with a visually discernible color shifting from red to blue) and recognizing finger bending and specific spoken words, which showcases its potential in pliable dual-signal sensing in human health monitoring and strain detection.
Collapse
Affiliation(s)
- Di Lu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Zhen Fang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Zhuhui Qiao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| |
Collapse
|
7
|
Zhou T, Li P, Sun Y, Wang W, Bai L, Chen H, Yang H, Yang L, Wei D. BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection. J Mater Chem B 2025; 13:2705-2716. [PMID: 39844677 DOI: 10.1039/d4tb02186j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat. In this study, BSA was initially attached to CNCs through electrostatic interactions. To further boost the surface active sites of the nanomaterial (CNCs@BSA), PEI was grafted onto the nanomaterial surface. The resulting CNC@BSA@PEI nanomaterials were then used as carriers for GOD. The prepared hydrogel exhibited good self-healing properties (87.5%) and excellent breaking strength (0.8 MPa), effectively converting glucose stimulation in human sweat into electrical output. The sensor had a detection range of 1.0-100.0 μM and a detection limit as low as 0.9 μM. Due to its ability to specifically recognize trace glucose levels in sweat, the CBPG-PVA sensor can perform highly selective, flexible, and reliable real-time monitoring of human sweat, offering significant potential for wearable biofluid monitoring in personalized health applications.
Collapse
Affiliation(s)
- Tianjun Zhou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Pan Li
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Yujie Sun
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| |
Collapse
|
8
|
Qian Y, Wang H, Qu Z, Li Q, Wang D, Yang X, Qin H, Wei H, Zhang F, Qing G. Synergistic color-changing and conductive photonic cellulose nanocrystal patches for sweat sensing with biodegradability and biocompatibility. MATERIALS HORIZONS 2025; 12:499-511. [PMID: 39485285 DOI: 10.1039/d4mh01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Given the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA). The introduction of PA significantly enhances the hydrogen bonding interaction, resulting in the composite film with impressive flexibility (1.4 MJ m-3) and progressive color changes from blue, green, yellow, to ultimately red upon sweat wetting. Interestingly, this system simultaneously demonstrates selective and sensitive electrical sensing functions, as well as satisfactory biocompatibility, biodegradability, and breathability. Importantly, a proof-of-concept demonstration of a skin-adhesive patch is presented, where the optical and electrical dual-signal sweat sensing allows for intuitive visual and multimode electric localization of sweat accumulation during physical exercises. This innovative interactive strategy for monitoring human metabolites could offer a fresh perspective into the design of wearable health-sensing devices, while greatly expanding the applications of CNC-based photonic materials in medicine-related fields.
Collapse
Affiliation(s)
- Yi Qian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Hao Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Zhen Qu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xindi Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300000, P. R. China
| | - Haijie Wei
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Fusheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guangyan Qing
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
9
|
Tang Y, Lu C, Xiong R. Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering. ACS NANO 2024; 18:14629-14639. [PMID: 38776427 DOI: 10.1021/acsnano.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Natural bouligand structures enable crustacean exoskeletons and fruits to strike a combination of exceptional mechanical robustness and brilliant chiroptical properties owing to multiscale structural hierarchy. However, integrating such a high strength-stiffness-toughness combination and photonic functionalities into synthetic hydrogels still remains a grand challenge. In this work, we report a simple yet general biomimetic strategy to construct an ultrarobust chiroptical hydrogel by closely mimicking the natural bouligand structure at multilength scale. The hierarchical structural engineering of long-range ordered cellulose nanocrystals' bouligand structure, well-defined poly(vinyl alcohol) nanocrystalline domains, and dynamic interfacial interaction synergistically contributes to the integration of high strength (23.3 MPa), superior modulus (264 MPa), and high toughness (54.7 MJ m-3), as well as extraordinary impact resistance, which far exceed their natural counterparts and synthetic photonic hydrogels. More importantly, seamless chiroptical and solvent-responsive patterns with high resolution can also be scalably integrated into the hydrogel by localized manipulation of the photonic band, while maintaining good ionic conductivity. Such exceptional mechanical-photonic combination holds tremendous potential for applications in wearable sensors, encryption, displays, and soft robotics.
Collapse
Affiliation(s)
- Yulu Tang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Shi SC, Ouyang SW, Rahmadiawan D. Erythrosine-Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging. Polymers (Basel) 2024; 16:960. [PMID: 38611218 PMCID: PMC11013871 DOI: 10.3390/polym16070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Though paper is an environmentally friendly alternative to plastic as a packaging material, it lacks antibacterial properties, and some papers have a low resistance to oil or water. In this study, a multifunctional paper-coating material was developed to reduce the use of plastic packaging and enhance paper performance. Natural cellulose nanocrystals (CNCs) with excellent properties were used as the base material for the coating. The CNCs were functionalized into dialdehyde CNCs (DACNCs) through periodate oxidation. The DACNCs were subsequently complexed using erythrosine as a photosensitizer to form an erythrosine-CNC composite (Ery-DACNCs) with photodynamic inactivation. The Ery-DACNCs achieved inactivations above 90% after 30 min of green light irradiation and above 85% after 60 min of white light irradiation (to simulate real-world lighting conditions), indicating photodynamic inactivation effects. The optimal parameters for a layer-by-layer dip coating of kraft paper with Ery-DACNCs were 4.5-wt% Ery-DACNCs and 15 coating layers. Compared to non-coated kraft paper and polyethylene-coated paper, the Ery-DACNC-coated paper exhibited enhanced mechanical properties (an increase of 28% in bursting strength). More than 90% of the bacteria were inactivated after 40 min of green light irradiation, and more than 80% were inactivated after 60 min of white light irradiation.
Collapse
Affiliation(s)
- Shih-Chen Shi
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (S.-W.O.); (D.R.)
| | - Sing-Wei Ouyang
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (S.-W.O.); (D.R.)
| | - Dieter Rahmadiawan
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (S.-W.O.); (D.R.)
- Department of Mechanical Engineering, Universitas Negeri Padang, Padang 25173, Indonesia
| |
Collapse
|
11
|
Tan QW, Li D, Li LY, Wang ZL, Wang XL, Wang YZ, Song F. A Rule for Response Sensitivity of Structural-Color Photonic Colloids. NANO LETTERS 2023; 23:9841-9850. [PMID: 37737087 DOI: 10.1021/acs.nanolett.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
To mimic natural photonic crystals having color regulation capacities dynamically responsive to the surrounding environment, periodic assembly structures have been widely constructed with response materials. Beyond monocomponent materials with stimulus responses, binary and multiphase systems generally offer extended color space and complex functionality. Constructing a rule for predicting response sensitivity can provide great benefits for the tailored design of intelligently responsive photonic materials. Here, we elucidate mathematical relationships between the response sensitivity of dynamically structural-color changes and the location distances of photonic co-phases in three-dimensional Hansen space that can empirically express the strength of their interaction forces, including dispersion force, polarity force, and hydrogen bonding. Such an empirical rule is proven to be applicable for some typical alcohols, acetone, and acetic acid regardless of their molecular structures, as verified by angle resolution spectroscopy, in situ infrared spectroscopy, and molecular simulation. The theoretical method we demonstrate provides rational access to custom-designed responsive structural coloration.
Collapse
Affiliation(s)
- Qiang-Wu Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lin-Yue Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zi-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Luo Y, Liu Q, He P, Li L, Zhang Z, Li X, Bao G, Wong K, Tanner PA, Jiang L. Responsive Regulation of Energy Transfer in Lanthanide-Doped Nanomaterials Dispersed in Chiral Nematic Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303235. [PMID: 37505484 PMCID: PMC10520692 DOI: 10.1002/advs.202303235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The responsive control of energy transfer (ET) plays a key role in the broad applications of lanthanide-doped nanomaterials. Photonic crystals (PCs) are excellent materials for ET regulation. Among the numerous materials that can be used to fabricate PCs, chiral nematic liquid crystals are highly attractive due to their good photoelectric responsiveness and biocompatibility. Here, the mechanisms of ET and the photonic effect of chiral nematic structures on ET are introduced; the regulation methods of chiral nematic structures and the resulting changes in ET of lanthanide-doped nanomaterials are highlighted; and the challenges and promising opportunities for ET in chiral nematic structures are discussed.
Collapse
Affiliation(s)
- Yuxia Luo
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Qingdi Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Ping He
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Liang Li
- School of Life SciencesCentral China Normal UniversityWuhan430079China
| | - Zhao Zhang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Xinping Li
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneySydneyNSW2007Australia
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR999077China
| | - Peter A. Tanner
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR999077China
| | - Lijun Jiang
- School of Life SciencesCentral China Normal UniversityWuhan430079China
| |
Collapse
|