1
|
Li T, Liu J, Guo M, Bin FC, Duan Q, Dong XZ, Jin F, Fujita K, Zheng ML. Femtosecond Laser Maskless Optical Projection Lithography of Cartilage PCM Inspired 3D Protein Matrix to Chondrocyte Phenotype. Adv Healthc Mater 2024; 13:e2400849. [PMID: 38687974 DOI: 10.1002/adhm.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/28/2024] [Indexed: 05/02/2024]
Abstract
Hydrogels containing chondrocytes have exhibited excellent potential in regenerating hyaline cartilage. However, chondrocytes are vulnerable to dedifferentiation during in vitro culture, leading to fibrosis and mechanical degradation of newly formed cartilage. It is proposed to modulate cartilage formation via the developed chondrocyte pericellular matrix (PCM) -like scaffolds for the first time, in which the S, M, and L-sized scaffolds are fabricated by femtosecond laser maskless optical projection lithography (FL-MOPL) of bovine serum albumin-glyceryl methacrylate hydrogel. Chondrocytes on the M PCM-like scaffold can maintain round morphology and synthesize extracellular matrix (ECM) to induce regeneration of hyaline cartilage microtissues by geometrical restriction. A series of M PCM-like scaffolds is fabricated with different stiffness and those with a high Young's modulus are more effective in maintaining the chondrocyte phenotype. The proposed PCM-like scaffolds are effective in modulating cartilage formation influenced by pore size, depth, and stiffness, which will pave the way for a better understanding of the geometric cues of mechanotransduction interactions in regulating cell fate and open up new avenues for tissue engineering.
Collapse
Affiliation(s)
- Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
| | - Min Guo
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, China
| | - Fan-Chun Bin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, China
| |
Collapse
|
2
|
Li T, Liu J, Bin FC, Duan Q, Wu XY, Dong XZ, Zheng ML. Multipatterned Chondrocytes' Scaffolds by FL-MOPL with a BSA-GMA Hydrogel to Regulate Chondrocytes' Morphology. ACS APPLIED BIO MATERIALS 2024; 7:2594-2603. [PMID: 38523342 DOI: 10.1021/acsabm.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Repairing articular cartilage damage is challenging due to its low regenerative capacity. In vitro, cartilage regeneration is a potential strategy for the functional reconstruction of cartilage defects. A hydrogel is an advanced material for mimicking the extracellular matrix (ECM) due to its hydrophilicity and biocompatibility, which is known as an ideal scaffold for cartilage regeneration. However, chondrocyte culture in vitro tends to dedifferentiate, leading to fibrosis and reduced mechanical properties of the newly formed cartilage tissue. Therefore, it is necessary to understand the mechanism of modulating the chondrocytes' morphology. In this study, we synthesize photo-cross-linkable bovine serum albumin-glycidyl methacrylate (BSA-GMA) with 65% methacrylation. The scaffolds are found to be suitable for chondrocyte growth, which are fabricated by homemade femtosecond laser maskless optical projection lithography (FL-MOPL). The large-area chondrocyte scaffolds have holes with interior angles of triangle (T), quadrilateral (Q), pentagon (P), hexagonal (H), and round (R). The FL-MOPL polymerization mechanism, swelling, degradation, and biocompatibility of the BSA-GMA hydrogel have been investigated. Furthermore, cytoskeleton and nucleus staining reveals that the R-scaffold with larger interior angle is more effective in maintaining chondrocyte morphology and preventing dedifferentiation. The scaffold's ability to maintain the chondrocytes' morphology improves as its shape matches that of the chondrocytes. These results suggest that the BSA-GMA scaffold is a suitable candidate for preventing chondrocyte differentiation and supporting cartilage tissue repair and regeneration. The proposed method for chondrocyte in vitro culture by developing biocompatible materials and flexible fabrication techniques would broaden the potential application of chondrocyte transplants as a viable treatment for cartilage-related diseases.
Collapse
Affiliation(s)
- Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Fan-Chun Bin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xin-Yi Wu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| |
Collapse
|