1
|
Wu Y, Chang Y, Jia J. Studying CeO 2-modified defective carbon as an electrocatalyst for electrochemical reduction of CO 2. RSC Adv 2025; 15:4562-4572. [PMID: 39931401 PMCID: PMC11809190 DOI: 10.1039/d4ra08845j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is regarded as an efficient approach to obtain high value-added chemicals and fuels. It can store intermittent renewable energy and enable artificial carbon cycling. However, on account of the small number of active sites in traditional carbon materials, the electrocatalytic performance is poor. Meanwhile, rare earth elements play a significant role in many fields owing to their abundant electronic energy levels, attracting increasing attention from the scientific community. In this study, we modified defective carbon with cerium oxide (CeO2) to produce abundant oxygen vacancies, and the synthesized V0-CeO2-1300 catalyst showed excellent catalytic performance for generating CO. At a low potential of -0.8 V (vs. RHE), the Faraday efficacy for CO could reach 79.65%. The current density was 12.6 mA cm-2 at -1.4 V. It was experimentally proved that loading cerium atoms on defective carbon is vital for promoting the catalytic performance of the CO2RR, endorsing the use of rare earth catalysts in electrochemical reactions at room temperature.
Collapse
Affiliation(s)
- Yihan Wu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University Hohhot 010022 China
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University Hohhot 010022 China
| | - Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University Hohhot 010022 China
| |
Collapse
|
2
|
Wang H, Kang X, Han B. Rare-earth Element-based Electrocatalysts Designed for CO 2 Electro-reduction. CHEMSUSCHEM 2024; 17:e202301539. [PMID: 38109070 DOI: 10.1002/cssc.202301539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical CO2 reduction presents a promising approach for synthesizing fuels and chemical feedstocks using renewable energy sources. Although significant advancements have been made in the design of catalysts for CO2 reduction reaction (CO2RR) in recent years, the linear scaling relationship of key intermediates, selectivity, stability, and economical efficiency are still required to be improved. Rare earth (RE) elements, recognized as pivotal components in various industrial applications, have been widely used in catalysis due to their unique properties such as redox characteristics, orbital structure, oxygen affinity, large ion radius, and electronic configuration. Furthermore, RE elements could effectively modulate the adsorption strength of intermediates and provide abundant metal active sites for CO2RR. Despite their potential, there is still a shortage of comprehensive and systematic analysis of RE elements employed in the design of electrocatalysts of CO2RR. Therefore, the current approaches for the design of RE element-based electrocatalysts and their applications in CO2RR are thoroughly summarized in this review. The review starts by outlining the characteristics of CO2RR and RE elements, followed by a summary of design strategies and synthetic methods for RE element-based electrocatalysts. Finally, an overview of current limitations in research and an outline of the prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
3
|
Wu W, Tong Y, Chen P. Regulation Strategy of Nanostructured Engineering on Indium-Based Materials for Electrocatalytic Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305562. [PMID: 37845037 DOI: 10.1002/smll.202305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR), as an emerging technology, can combine with sustainable energies to convert CO2 into high value-added products, providing an effective pathway to realize carbon neutrality. However, the high activation energy of CO2 , low mass transfer, and competitive hydrogen evolution reaction (HER) leads to the unsatisfied catalytic activity. Recently, Indium (In)-based materials have attracted significant attention in CO2 RR and a series of regulation strategies of nanostructured engineering are exploited to rationally design various advanced In-based electrocatalysts, which forces the necessary of a comprehensive and fundamental summary, but there is still a scarcity. Herein, this review provides a systematic discussion of the nanostructure engineering of In-based materials for the efficient electrocatalytic conversion of CO2 to fuels. These efficient regulation strategies including morphology, size, composition, defects, surface modification, interfacial structure, alloying, and single-atom structure, are summarized for exploring the internal relationship between the CO2 RR performance and the physicochemical properties of In-based catalysts. The correlation of electronic structure and adsorption behavior of reaction intermediates are highlighted to gain in-depth understanding of catalytic reaction kinetics for CO2 RR. Moreover, the challenges and opportunities of In-based materials are proposed, which is expected to inspire the development of other effective catalysts for CO2 RR.
Collapse
Affiliation(s)
- Wenbo Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
4
|
Wang D, Liao M, Jin L, Wu K, Peera SG, Liu C. Evaluating the Oxygen Electrode Reactions of La Single-Atom Catalysts with the N/C Coordination Effect. Inorg Chem 2023. [PMID: 38019710 DOI: 10.1021/acs.inorgchem.3c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
There is a growing demand for bifunctional electrocatalysts for oxygen electrodes in rechargeable metal-air batteries. This article investigates the bifunctional activity of La single-atom catalysts with N/C coordination (LaNxC6-x@Gra) using density functional theory (DFT). The augmentation of N coordination will result in enhanced synthetic stability. The coordination between nitrogen and carbon (N/C) has a significant influence on the working stability of the system under consideration. In the context of active atoms, the coordination between nitrogen and carbon (N/C coordination) has a significant impact on the electronic structure. This, in turn, influences the adsorption performance and catalytic activity of the catalysts. In the case of stable coordination environments, a correlation exists between the f-orbital center (εf) and the overpotential (η) via the adsorption free energy of intermediates (ΔG*ads). This correlation serves as a useful tool for predicting catalytic performance. The LaNxC6-x@Gra exhibits remarkable bifunctional activity due to its complementary performance, with an overpotential for the oxygen reduction reaction (ηORR) of 0.66 V and an overpotential for the oxygen evolution reaction (ηOER) of 0.43 V. This makes it a promising candidate for use as a bifunctional electrocatalyst in oxygen electrodes.
Collapse
Affiliation(s)
- Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Mengqi Liao
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Luya Jin
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Kang Wu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
5
|
Wei K, Pan K, Qu G, Zhou J. Customization from Single to Dual Atomic Sites for Efficient Electrocatalytic CO 2 Reduction to Value-added Chemicals. Chem Asian J 2023; 18:e202300498. [PMID: 37401141 DOI: 10.1002/asia.202300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received increasing attention in the field of electrochemical CO2 RR with their efficient atom utilization efficiency and excellent catalytic performance. However, their low metal loading and the presence of linear relationships for single active sites with simple structures possibly restrict their activity and practical applications. Active site tailoring at the atomic level is a visionary approach to break the existing limitations of SACs. This paper first briefly introduces the synthesis strategies of SACs and DACs. Then, combining previous experimental and theoretical studies, this paper introduces four optimization strategies, namely spin-state tuning engineering, axial functionalization engineering, ligand engineering, and substrate tuning engineering, for improving the catalytic performance of SACs in the electrochemical CO2 RR process by combining previous experimental and theoretical studies. Then it is introduced that DACs exhibit significant advantages over SACs in increasing metal atom loading, promoting the adsorption and activation of CO2 molecules, modulating intermediate adsorption, and promoting C-C coupling. At the end of this paper, we briefly and succinctly summarize the main challenges and application prospects of SACs and DACs in the field of electrochemical CO2 RR at present.
Collapse
Affiliation(s)
- Kunling Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Keheng Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Junhong Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, 650500, China
| |
Collapse
|
6
|
Zeng X, Liao L, Wang M, Wang H. Rare-earth metal-N 6 centers in porous carbon for electrocatalytic CO 2 reduction. Phys Chem Chem Phys 2023. [PMID: 37465923 DOI: 10.1039/d3cp02314a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Single-atom catalysts fabricated using rare earth elements have emerged for electrocatalytic carbon dioxide reduction, but they need to be studied systematically and intensively. Herein, density functional theory was employed to determine the electrocatalytic CO2 reduction activity of rare earth-N6 porous carbon (Re = Ce, Nd, Sm, Eu, Gd, Tb, Er, Tm, Yb, and Lu) single-atom catalysts. The results revealed that the binding energy of the rare-earth atoms to the N6C monolayers in the ten studied Re-N6C monatomic catalysts is much more negative than the cohesion energy of the bulk rare-earth metal, which makes rare-earth atoms stably dispersed in the N6C skeleton. CO is the primary chemical product of electrocatalytic CO2 reduction by Ce, Eu, and Lu. The primary product of the six monatomic species, i.e., Nd, Sm, Tb, Er, Tm, and Yb, is HCOOH. The dominant product of Gd is CH4. The limiting potentials of these catalysts are in the range of 0.31-0.786 V and their overpotentials are in the range of 0.06-0.707 V, all of which are relatively low, showing that they are potential and promising electrocatalysts for CO2 reduction. Subsequently, Eu-N6C was experimentally synthesized and used for electrocatalytic CO2 reduction to obtain CO products, and the overpotential showed good agreement with the theoretically calculated values.
Collapse
Affiliation(s)
- Xianshi Zeng
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China.
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Luliang Liao
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China.
| | - Meishan Wang
- School of Integrated Circuits, Ludong University, Yantai city, 264025, China.
| | - Hongming Wang
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China.
| |
Collapse
|