1
|
Chen C, Chen J, Chen Z, Liu H, Zhang Z, Chen R, Lu H, Mao L. Chiral Rare-Earth (Ce, Eu) Metal Halides with Bright Circularly Polarized Luminescence. Inorg Chem 2024; 63:21801-21805. [PMID: 39505695 DOI: 10.1021/acs.inorgchem.4c03570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Chiral metal halide materials are emerging chiroptical materials that are easy to synthesize and have a wide tunability. Rare-earth (RE) metals are desirable components to be incorporated in the hybrid regime; however, they are typically difficult to handle for solution-based halide chemistry. Here, we report two new examples of chiral RE metal halides with Ce(III) and Eu(III) with chiral alkanolammonium cations (R/S-3-hydroxyquinuclidium). These compounds crystallize in the non-centrosymmetric space group R3, where their mirror-like symmetric circular dichroism (CD) and circularly polarized luminescence (CPL) further witness the chiral nature. The superior emission properties, including the high photoluminescence quantum yield of the Ce-based materials (84-90%) and Eu-based materials (27-29%), have led to distinct and sharp symmetrical CPL in the ultraviolet and visible regions, with dissymmetry factors (glum) of ∼2 × 10-3 and ∼4 × 10-3, respectively. This work has established and expanded the materials space for chiral RE metal halides and demonstrated their potential for chiroptical and spintronic applications.
Collapse
Affiliation(s)
- Congcong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhongwei Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong (SAR) 999077, China
| | - Huan Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zixuan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong (SAR) 999077, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong (SAR) 999077, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
2
|
Liu DY, Xiong LY, Dong XY, Han Z, Liu HL, Zang SQ. Reversible Local Protonation-Deprotonation: Tuning Stimuli-Responsive Circularly Polarized Luminescence in Chiral Hybrid Zinc Halides for Anti-Counterfeiting and Encryption. Angew Chem Int Ed Engl 2024; 63:e202410416. [PMID: 39134476 DOI: 10.1002/anie.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024]
Abstract
Precise control over the organic composition is crucial for tailoring the distinctive structures and properties of hybrid metal halides. However, this approach is seldom utilized to develop materials that exhibit stimuli-responsive circularly polarized luminescence (CPL). Herein, we present the synthesis and characterization of enantiomeric hybrid zinc bromides: biprotonated ((R/S)-C12H16N2)ZnBr4 ((R/S-LH2)ZnBr4) and monoprotonated ((R/S)-C12H15N2)2ZnBr4 ((R/S-LH1)2ZnBr4), derived from the chiral organic amine (R/S)-2,3,4,9-Tetrahydro-1H-carbazol-3-amine ((R/S)-C12H14N2). These compounds showcase luminescent properties; the zero-dimensional biprotonated form emits green light at 505 nm, while the monoprotonated form, with a pseudo-layered structure, displays red luminescence at 599 and 649 nm. Remarkably, the reversible local protonation-deprotonation behavior of the organic cations allows for exposure to polar solvents and heating to induce reversible structural and luminescent transformations between the two forms. Theoretical calculations reveal that the lower energy barrier associated with the deprotonation process within the pyrrole ring is responsible for the local protonation-deprotonation behavior observed. These enantiomorphic hybrid zinc bromides also exhibit switchable circular dichroism (CD) and CPL properties. Furthermore, their chloride counterparts were successfully obtained by adjusting the halogen ions. Importantly, the unique stimuli-responsive CPL characteristics position these hybrid zinc halides as promising candidates for applications in information storage, anti-counterfeiting, and information encryption.
Collapse
Affiliation(s)
- Dan-Yang Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin-Yuan Xiong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhen Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua-Li Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Liu YQ, Huang S, Leng JD, Lin WQ. 1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties. Molecules 2024; 29:4217. [PMID: 39275065 PMCID: PMC11397344 DOI: 10.3390/molecules29174217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 09/16/2024] Open
Abstract
This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2'-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2'-bpy)3][Pb2Br6] (2), synthesized via solvothermal reactions. These compounds incorporate transition metal complex cations as structural directors, contributing to the unique photophysical and photocatalytic properties of the resulting materials. Single-crystal X-ray diffraction analysis reveals that both compounds crystallize in monoclinic space groups with distinct 1D lead bromide chain configurations influenced by the nature of the complex cations. Optical property assessments show band gaps of 3.04 eV and 2.02 eV for compounds 1 and 2, respectively, indicating their potential for visible light absorption. Photocurrent measurements indicate a significantly higher electron-hole separation efficiency in compound 2, correlated with its narrower band gap. Additionally, photocatalytic evaluations demonstrate that while both compounds degrade organic dyes effectively, compound 2 also exhibits notable hydrogen evolution activity under visible light, a property not observed in 1. These findings highlight the role of metal complex cations in tuning the electronic and structural properties of lead(II) bromide hybrids, enhancing their applicability in photocatalytic and optoelectronic devices.
Collapse
Affiliation(s)
- Ya-Qi Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Sen Huang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Ji-Dong Leng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Wei-Quan Lin
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
4
|
Chen L, Yuan J, He X, Zheng F, Lu X, Xiang S, Lu Q. Controllable Circularly Polarized Luminescence with High Dissymmetry Factor via Co-Assembly of Achiral Dyes in Liquid Crystal Polymer Films. SMALL METHODS 2024; 8:e2301517. [PMID: 38221818 DOI: 10.1002/smtd.202301517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Circularly polarized luminescence (CPL) materials are highly demanded due to their great potential in optoelectronic and chiroptical elements. However, the preparation of CPL films with high luminescence dissymmetry factors (glum) remains a formidable task, which impedes their practical application in film-based devices. Herein, a facile strategy to prepare solid CPL film with a high glum through exogenous chiral induction and amplification of liquid crystal polymers is proposed. Amplification and reversion of the CPL appear when the films are annealed at the chiral nematic liquid crystalline temperature and the maximal glum up to 0.30 due to the enhancement of selective reflection. Thermal annealing treatment at different liquid crystalline states facilitates the formation of the chiral liquid phase and adjusts the circularly polarized emission. This work not only provides a straightforward and versatile platform to construct organic films capable of exhibiting strong circularly polarized emission but also is helpful in understanding the exact mechanism for the liquid crystal enhancement of CPL performance.
Collapse
Affiliation(s)
- Lianjie Chen
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianan Yuan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Xiaojie He
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Shuangfei Xiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| |
Collapse
|
5
|
Kumaranchira Ramankutty K. Circular dichroism and circularly polarized luminescence of ligand-protected molecular metal clusters: insights into structure-chiroptical property relationships. NANOSCALE 2024; 16:11914-11927. [PMID: 38845602 DOI: 10.1039/d4nr01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Molecular noble metal clusters are an emerging class of circularly polarized luminescent (CPL) nanomaterials. Many of the ligand-protected metal clusters exhibit discrete electronic absorption bands, which are assigned to their structural components such as metal core, ligands and metal-ligand interfaces. This implies the suitability of the chiroptical spectroscopic approach to unravel the structure-chiroptical property relationships in molecular metal clusters. Due to the tremendous developments in computational methods for investigating chiroptical properties, along with circular dichroism (CD) and CPL spectroscopy, understanding of the structure-chiroptical properties of these clusters is rapidly progressing. This review discusses various strategies such as the use of chiral ligands, metal atom substitution, ligand exchange, co-crystallization with chiral ligands, etc., for inducing and enhancing the CPL of such metal clusters. This review demonstrates the potential of combined CD-CPL spectroscopic investigations and theoretical calculations to unravel the origins of photoluminescence and CPL activity of chiral metal clusters.
Collapse
Affiliation(s)
- Krishnadas Kumaranchira Ramankutty
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, 69551, India.
| |
Collapse
|
6
|
Li J, Luo Q, Wei J, Zhou L, Chen P, Luo B, Chen Y, Pang Q, Zhang JZ. Circularly Polarized Luminescence Induced by Hydrogen-Bonding Networks in a One-Dimensional Hybrid Manganese(II) Chloride. Angew Chem Int Ed Engl 2024; 63:e202405310. [PMID: 38606567 DOI: 10.1002/anie.202405310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Chiral hybrid metal halides hold great potential as circularly polarized luminescence light sources. Herein, we have obtained two enantiomeric pairs of one-dimensional hybrid chiral manganese(II) chloride single crystals, R/S-(3-methyl piperidine)MnCl3 (R/S-1) and R/S-(3-hydroxy piperidine)MnCl3 (R/S-2), crystallizing in the non-centrosymmetric space group P212121. In comparison to R/S-1, R/S-2 single crystals not only show red emission with near-unity photoluminescence quantum yield (PLQY) and high resistance to thermal quenching but also exhibit circularly polarized luminescence with an asymmetry factor (glum) of 2.5×10-3, which can be attributed to the enhanced crystal rigidity resulting from the hydrogen bonding networks between R/S-(3-hydroxy piperidine) cations and [MnCl6]4- chains. The circularly polarized luminescence activities originate from the asymmetric [MnCl6]4- luminophores induced by N-H⋅⋅⋅Cl hydrogen bonding with R/S-(3-hydroxy piperidine). Moreover, these samples demonstrate great application potential in circularly polarized light-emitting diodes and X-ray scintillators. This work shows a highly efficient photoluminescent Mn-based halide and offers a strategy for designing multifunctional chiral metal halides.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Qiulian Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Jianwu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Peican Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Binbin Luo
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Yibo Chen
- Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Qi Pang
- School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz California, 95064, United States
| |
Collapse
|
7
|
Liu X, Zhang T, Zhou L, Li M, He R. Dual-Emissive γ-[Cu 4I 8] 4- Enables Luminescent Thermochromism in an Organic-Inorganic Hybrid Copper(I) Halide. Inorg Chem 2024; 63:5821-5830. [PMID: 38511502 DOI: 10.1021/acs.inorgchem.3c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A highly luminescent (C13H28N2)2Cu4I8 single crystal containing isolated γ-[Cu4I8]4- anionic cluster was synthesized without the use of unsaturated cations. To the best of our knowledge, compounds bearing such like anions are not dual-emitting under UV excitation. However, dual emission does occur in (C13H28N2)2Cu4I8. Moreover, the emission bands were found to be temperature-sensitive, allowing tuning of the emission colors from blue (0.19, 0.20) to green (0.33, 0.47) in the Commission International de L' Eclairage (CIE) chromaticity coordinates. Remarkably, the color could be restored on returning to the initial temperature, confirming an efficient and reversible luminescent thermochromic effect in (C13H28N2)2Cu4I8. The origin of this excellent optical performance is discussed, and the difference in the mechanism with the dual-emissive Cu(I) halide complexes is also elucidated. Overall, our work provides a promising way to achieve efficient luminescent thermochromism. The developed (C13H28N2)2Cu4I8 represents one of the viable alternatives for eco-friendly luminescent thermochromic materials.
Collapse
Affiliation(s)
- Xing Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ting Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ming Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Rongxing He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
8
|
Jiang ZH, Shang P, Jiang ZW, Lu T, Guan HM, Li YH, Gui LC, Jiang XF. Self-Assembly of an Anionic [Cu 5I 8] 3- Supramolecular Cluster Driven by Ion-Pair Interaction and Catalytic Properties. Inorg Chem 2023; 62:15403-15411. [PMID: 37703056 DOI: 10.1021/acs.inorgchem.3c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The rational design and controlling synthesis of an anionic cuprous iodide supramolecular cluster with high nuclearity through noncovalent interactions remains a significant challenge. Herein, a cationic organic ligand (L1)3+ was driven by anion-cation ion-pair electrostatic interaction to induce free cuprous iodide to aggregate into an anionic supramolecular cluster, [(Cu5I8)3-(L1)3+] (C1). Moreover, five copper(I) atoms bind with eight iodides through multiply bridged Cu-I bonds associated with intramolecular cuprophilic interactions in this butterfly-shaped cluster core. Supramolecular cluster C1 exhibited a solid-state emission at 380 nm and an emission at 405 nm in acetonitrile at room temperature, respectively. Interestingly, this unprecedented cuprous iodide cluster demonstrated a good catalytic performance for azide-alkyne cycloaddition reaction (CuAAC) and the catalytic yield can be up to 80% for eight different substrates at 80 °C. Furthermore, the density functional theory (DFT) calculation revealed that the thermodynamic-dependent cycloaddition reaction underwent a four-step pathway with an overall energy barrier of -43.6 kcal mol-1 on the basis of intermediates monitored by mass spectrum.
Collapse
Affiliation(s)
- Zi-Hao Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, 430062 Wuhan, Hubei, China
| | - Ping Shang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, 430062 Wuhan, Hubei, China
| | - Zi-Wei Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, 430062 Wuhan, Hubei, China
| | - Tao Lu
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, 430062 Wuhan, Hubei, China
| | - Hui-Ming Guan
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, 430062 Wuhan, Hubei, China
| | - Yu-Hua Li
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, 430062 Wuhan, Hubei, China
| | - Liu-Cheng Gui
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 541004 Guilin, Guangxi, China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, 430062 Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, 430200 Wuhan, China
| |
Collapse
|
9
|
Liu DY, Li HY, Han RP, Liu HL, Zang SQ. Multiple Stimuli-Responsive Luminescent Chiral Hybrid Antimony Chlorides for Anti-Counterfeiting and Encryption Applications. Angew Chem Int Ed Engl 2023; 62:e202307875. [PMID: 37460441 DOI: 10.1002/anie.202307875] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Stimuli-responsive circularly polarized luminescence (CPL) materials are ideal for information anti-countering applications, but the best-performing materials have not yet been identified. This work presents enantiomorphic hybrid antimony halides R-(C5 H12 NO)2 SbCl5 (1) and S-(C5 H12 NO)2 SbCl5 (2) showing mirror-imaged CPL activity with a dissymmetry factor of 1.2×10-3 . Interestingly, the DMF-induced structural transformation is realized to obtain non-emissive R-(C5 H12 NO)2 SbCl5 ⋅ DMF (3) and S-(C5 H12 NO)2 SbCl5 ⋅ DMF (4) upon exposure to DMF vapor. The transformation process is reversed upon heating. DFT calculations showed that the DMF-induced-quenched-luminescence is attributed to the intersection of the ground and excited state curves on the configuration coordinates. Unexpectedly, the nanocrystals of the chiral antimony halides 1 and 2 were prepared and indicate the excellent solution process performance. The reversible PL and CPL switching gives the system applications in information technology, anti-counterfeiting, encryption-decryption, and logic gates.
Collapse
Affiliation(s)
- Dan-Yang Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Run-Ping Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua-Li Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|