1
|
Liu Y, Wang Z, Song X, Shen X, Wei Y, Hua C, Shao P, Qu D, Jiang J, Liu Y. 3D Printing-Induced Hierarchically Aligned Nanocomposites With Exceptional Multidirectional Strain Sensing Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404810. [PMID: 39252642 DOI: 10.1002/smll.202404810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
High-performance sensors capable of detecting multidirectional strains are indispensable to understand the complex motions involved in flexible electronics. Conventional isotropic strain sensors can only measure uniaxial deformations or single stimuli, hindering their practical application fields. The answer to such challenge resides in the construction of engineered anisotropic sensing structures. Herein, a hierarchically aligned carbon nanofiber (CNF)/polydimethylsiloxane nanocomposite strain sensor is developed by one-step 3D printing. The precisely controlled printing path and shear flow bring about highly aligned nanocomposite filaments at macroscale and orientated CNF network within each filament at microscale. The periodically orientated nanocomposite filaments along with the inner aligned CNF network successfully control the strain distribution and the appearance of microcracks, giving rise to anisotropic structural response to external deformations. The synergetic effect of the multiscale structural design leads to distinguishable gauge factors of 164 and 0.5 for applied loadings along and transverse to the alignment direction, leading to an exceptional selectivity of 3.77. The real-world applications of the hierarchically aligned sensors in multiaxial movement detector and posture-correction device are further demonstrated. The above findings propose new ideas for manufacturing nanocomposites with engineered anisotropic structure and properties, verifying promising applications in emerging wearable electronics and soft robotics.
Collapse
Affiliation(s)
- Yanjun Liu
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xinyu Song
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yi Wei
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenxi Hua
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Pengpeng Shao
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Daopeng Qu
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Jiang
- Department of Electrical and Computer Engineering, Western University, London, N6A 5B9, Canada
| | - Yu Liu
- School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Li L, Ai Z, Wu J, Lin Z, Huang M, Gao Y, Bai H. A robust polyaniline hydrogel electrode enables superior rate capability at ultrahigh mass loadings. Nat Commun 2024; 15:6591. [PMID: 39097614 PMCID: PMC11298009 DOI: 10.1038/s41467-024-50831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Simultaneously achieving high mass loading and superior rate capability in electrodes is challenging due to their often mutually constrained nature, especially for pseudocapacitors for high-power density applications. Here, we report a robust porous polyaniline hydrogel (PPH) prepared using a facile ice-templated in situ polymerization approach. Owing to the conductive, robust, and porous nanostructures suitable for ultrafast electron and ion transport, the self-supporting pure polyaniline hydrogel electrode exhibits superior areal capacitance without sacrificing rate capability and gravimetric capacitance at an ultrahigh mass loading and notable current density. It achieves a high areal capacitance (15.2 F·cm-2 at 500 mA·cm-2) and excellent rate capability (~92.7% retention from 20 to 500 mA·cm-2) with an ultrahigh mass loading of 43.2 mg cm-2. Our polyaniline hydrogel highlights the potential of designing porous nanostructures to boost the performance of electrode materials and inspires the development of other ultrafast pseudocapacitive electrodes with ultrahigh loadings and fast charge/discharge capabilities.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, Hainan, China
| | - Zhiting Ai
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, Hainan, China
| | - Jifeng Wu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, Hainan, China.
| | - Zewen Lin
- College of Materials, Xiamen University, Xiamen, PR China
| | - Muyun Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, Hainan, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, Hainan, China.
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, PR China.
| |
Collapse
|
3
|
Huang H, Cong HT, Lin Z, Liao L, Shuai CX, Qu N, Luo Y, Guo S, Xu QC, Bai H, Jiang Y. Manipulation of Conducting Polymer Hydrogels with Different Shapes and Related Multifunctionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309575. [PMID: 38279627 DOI: 10.1002/smll.202309575] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Indexed: 01/28/2024]
Abstract
Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.
Collapse
Affiliation(s)
- Hao Huang
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Hong-Tao Cong
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Zewen Lin
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Longhui Liao
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Chen-Xi Shuai
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Nuo Qu
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Yujiao Luo
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Shengshi Guo
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Chi Xu
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Hua Bai
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Yuan Jiang
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
4
|
Huang M, Zhang C, Hou F, Yang H, Ding N. Stabilization and strengthening effects of filamentous nanocellulose in the foam forming of quartz paper. Int J Biol Macromol 2024; 263:130251. [PMID: 38368991 DOI: 10.1016/j.ijbiomac.2024.130251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Compared with traditional papermaking, foam forming is a new papermaking technology that uses foam instead of water to disperse fibres, which can effectively solve the problem of poor evenness of ceramic paper, but the instability of foam itself affects the application of foam forming technology. Herein, a highly stable foaming agent for foam forming technology was prepared via physical reaction of lauryl dimethyl amine oxide (OB-2) with filamentous nanocellulose (cellulose nanofiber (CNF-C) and bacterial cellulose (BC)). Then, the quartz paper was prepared by foam forming technology. Firstly, hydrogen bond interactions between hydroxyl groups of the filamentous nanocellulose and hydrophilic moieties on OB-2 enabled the formation of a 3D nanonetwork layer on the surface of the bubble, which extended the half-life of the bubble and effectively prevented the bubble from bursting or coalescing. Then, the foam was extruded and cracked, and the filamentous nanocellulose was retained on the quartz fibres to prepare filamentous nanocellulose/quartz fibre paper by foam forming technology. The quartz paper exhibited excellent evenness and mechanical properties. In conclusion, the research of foam forming technology is of great significance to the application and development of special paper.
Collapse
Affiliation(s)
- Mengle Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunhui Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fuqing Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huikang Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nengxin Ding
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Zhou S, Zhao Y, Xun Y, Wei Z, Yang Y, Yan W, Ding J. Programmable and Modularized Gas Sensor Integrated by 3D Printing. Chem Rev 2024; 124:3608-3643. [PMID: 38498933 DOI: 10.1021/acs.chemrev.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rapid advancement of intelligent manufacturing technology has enabled electronic equipment to achieve synergistic design and programmable optimization through computer-aided engineering. Three-dimensional (3D) printing, with the unique characteristics of near-net-shape forming and mold-free fabrication, serves as an effective medium for the materialization of digital designs into usable devices. This methodology is particularly applicable to gas sensors, where performance can be collaboratively optimized by the tailored design of each internal module including composition, microstructure, and architecture. Meanwhile, diverse 3D printing technologies can realize modularized fabrication according to the application requirements. The integration of artificial intelligence software systems further facilitates the output of precise and dependable signals. Simultaneously, the self-learning capabilities of the system also promote programmable optimization for the hardware, fostering continuous improvement of gas sensors for dynamic environments. This review investigates the latest studies on 3D-printed gas sensor devices and relevant components, elucidating the technical features and advantages of different 3D printing processes. A general testing framework for the performance evaluation of customized gas sensors is proposed. Additionally, it highlights the superiority and challenges of programmable and modularized gas sensors, providing a comprehensive reference for material adjustments, structure design, and process modifications for advanced gas sensor devices.
Collapse
Affiliation(s)
- Shixiang Zhou
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Yanran Xun
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Zhicheng Wei
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yong Yang
- Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Wentao Yan
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|