1
|
Qin L, Song Y, Zhang Y, Gao W, Meng X, Bai Y, Geng K, Niu P, Wang Y, Wu N, Bai J, Ma J, Ren L. Concentration dependent carbon nanodots: Tunable luminescent color and fluorescence excitation-wavelength dependence. J Colloid Interface Sci 2025; 679:135-143. [PMID: 39442205 DOI: 10.1016/j.jcis.2024.10.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Carbon nanodots (CNDs) exhibiting concentration dependent properties have been synthesized through a one-pot hydrothermal reaction process utilizing diethylenetriamine and l-aspartic acid. At solid-state or high concentrations, the CNDs display excitation-wavelength independent fluorescence (FL) emissions, while at low concentrations, they exhibit excitation-wavelength dependent FL emissions. Detailed characterization of the structure and optical properties reveals that the concentration dependent FL properties can be ascribed to the intrinsic-state luminescence of the CNDs at low concentrations and the assembled-state luminescence at solid-state/high concentrations. With the increase of concentration, the self-assembly behavior of CNDs may cause the transition from intrinsic-state dominant luminescence to assembled-state dominant luminescence, and finally lead to the red-shift of FL color. Furthermore, the CNDs@Urea composites possess adjustable room-temperature phosphorescence (RTP) from turquoise to yellow by controlling the CNDs doping concentration. CNDs with concentration dependent optical properties have shown certain potentials in the fields of cell imaging, fingerprint recognition and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Libo Qin
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Yang Song
- Laboratory Animal Center, Changzhi Medical College, Changzhi 046000, China
| | - Yuanyuan Zhang
- Department of Mathematics, Changzhi University, Changzhi 046011, China
| | - Wei Gao
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Xiaoyue Meng
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Yufei Bai
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Kexing Geng
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Pengyan Niu
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Yiru Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Na Wu
- Department of Chemistry, Changzhi University, Changzhi 046011, China
| | - Jianliang Bai
- Department of Chemistry, Changzhi University, Changzhi 046011, China; School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jianlong Ma
- Department of Chemistry, Changzhi University, Changzhi 046011, China.
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Ai L, Wang H, Wang B, Liu S, Song H, Lu S. Concentration-Switchable Assembly of Carbon Dots for Circularly Polarized Luminescent Amplification in Chiral Logic Gates and Deep-Red Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410094. [PMID: 39361264 DOI: 10.1002/adma.202410094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Indexed: 11/29/2024]
Abstract
Stimuli-responsive circularly polarized luminescent (CPL) materials are expected to find widespread application in advanced information technologies, such as 3D displays, multilevel encryption, and chiral optical devices. Here, using R-/S-α-phenylethylamine and 3,4,9,10-perylenetetracarboxylic dianhydride as precursors, chiral carbon dots (Ch-CDs) exhibiting bright concentration-dependent luminescence are synthesized, demonstrating reversible responses in both their morphologies and emission spectra. By adjusting Ch-CD concentration, the switchable wavelength is extended over 180 nm (539-720 nm), with the maximum quantum efficiency reaching 100%. Meanwhile, upon increasing Ch-CD concentration, the emission wavelength red-shifts, while the chirality of the assembled nanoribbons is synchronously amplified, ultimately achieving CPL at 709 nm and a maximum luminescence asymmetry factor of 2.18 × 10-2. These values represent the longest wavelength and the largest glum reported for CDs. Considering the remarkable optical properties of the synthesized Ch-CDs, multilevel chiral logic gates are designed, and their potential practical applications are demonstrated in multilevel anti-counterfeiting encryption, flexible electronic printing, and solid-state CPL. Furthermore, deep-red chiral electroluminescence light-emitting diodes (EL-LEDs) are prepared using these Ch-CDs, achieving an external quantum efficiency of 1.98%, which is the highest value reported to date for CDs in deep-red EL-LEDs, and the first report of chiral electronic devices based on CDs.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Haolin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Boyang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suya Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Haoqiang Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Chen L, Yuan J, He X, Zheng F, Lu X, Xiang S, Lu Q. Controllable Circularly Polarized Luminescence with High Dissymmetry Factor via Co-Assembly of Achiral Dyes in Liquid Crystal Polymer Films. SMALL METHODS 2024; 8:e2301517. [PMID: 38221818 DOI: 10.1002/smtd.202301517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Circularly polarized luminescence (CPL) materials are highly demanded due to their great potential in optoelectronic and chiroptical elements. However, the preparation of CPL films with high luminescence dissymmetry factors (glum) remains a formidable task, which impedes their practical application in film-based devices. Herein, a facile strategy to prepare solid CPL film with a high glum through exogenous chiral induction and amplification of liquid crystal polymers is proposed. Amplification and reversion of the CPL appear when the films are annealed at the chiral nematic liquid crystalline temperature and the maximal glum up to 0.30 due to the enhancement of selective reflection. Thermal annealing treatment at different liquid crystalline states facilitates the formation of the chiral liquid phase and adjusts the circularly polarized emission. This work not only provides a straightforward and versatile platform to construct organic films capable of exhibiting strong circularly polarized emission but also is helpful in understanding the exact mechanism for the liquid crystal enhancement of CPL performance.
Collapse
Affiliation(s)
- Lianjie Chen
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianan Yuan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Xiaojie He
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Shuangfei Xiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| |
Collapse
|
4
|
Guo T, Yang F, Liu C, Hou D, Zheng Y, Gao H, Lin X, Sun H. Solid-State Red Carbon Dots Based on Biomass Furan Derivatives. Inorg Chem 2024; 63:11478-11486. [PMID: 38819949 DOI: 10.1021/acs.inorgchem.4c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In the preparation of carbon dots (CDs), precursors are crucial, and abundant precursors endow CDs with various structures and fluorescence characteristics. Furan (FU) and its derivatives are considered excellent carbonization materials due to their π conjugated structures and active functional groups, such as hydroxyl and aldehyde groups. Herein, we prepare FU-derivative-based CDs by a solvothermal method and investigate the influences of the precursor structure on the fluorescence characteristics. Surprisingly, CDs prepared from 5-hydroxymethylfurfural (HMF) with both aldehyde and hydroxyl groups exhibit red-shifted fluorescence characteristics in the solid state. We postulate that this solid-state fluorescence characteristic is due to the enhancement of supramolecular cross-linking fluorescence between CDs. The unique precursor structure leads to carboxyl groups on the surface of HMF-CDs that are conducive to the hydrogen bond formation. As the concentration of CDs increases, the hydrogen bonding effect increases, leading to a red-shift in the fluorescence wavelength. Therefore, basically full-color CDs/poly(vinyl alcohol) (PVA) phosphor-based light-emitting diodes can be achieved by controlling the degree of supramolecular cross-linking of CDs in PVA. This research provides a new approach for the preparation of solid-state luminescent CDs.
Collapse
Affiliation(s)
- Tingxuan Guo
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Hui Gao
- Yunnan University of Chinese Medicine, 1076, Yuhua Road, University City of Chenggong, 650500 Kunming, Yunnan Province, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, Yunnan Province, China
| |
Collapse
|
5
|
Chen X, Yu M, Li P, Xu C, Zhang S, Wang Y, Xing X. Recent Progress on Chiral Carbon Dots: Synthetic Strategies and Biomedical Applications. ACS Biomater Sci Eng 2023; 9:5548-5566. [PMID: 37735749 DOI: 10.1021/acsbiomaterials.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The discovery of chiral carbon dots (Ch-CDs) has opened up an exciting new research direction in the field of carbon dots. It not only retains the chirality of the precursor and exhibits highly symmetric chiral optical properties but also has properties such as chemical stability, antibacterial and antitumor properties, and good biocompatibility of carbon dots. Based on these advantages, the application of Ch-CDs in the biomedical field has attracted significant interest among researchers. However, a comprehensive review of the selection of precursors for Ch-CDs, preparation methods, and applications in biomedical fields is still lacking. Here, we summarize their precursor selection and preparation methods based on recent reports on Ch-CDs and provide the first comprehensive review for specific applications in biomedical engineering, such as biosensing, bioimaging, drug carriers, antibacterial and antibiofilm, and enzyme activity modulation. Finally, we discuss application prospects and challenges that need to be overcome. We hope this review will provide valuable guidance for researchers to prepare novel Ch-CDs and facilitate their application in biomedical engineering.
Collapse
Affiliation(s)
- Xueli Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peili Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233000, China
| | - Chunning Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiyin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanglei Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Singh P, Farheen, Sachdev S, Manori S, Bhardwaj S, Chitme H, Sharma A, Raina KK, Shukla RK. Graphene quantum dot doped viscoelastic lyotropic liquid crystal nanocolloids for antibacterial applications. SOFT MATTER 2023; 19:6589-6603. [PMID: 37605525 DOI: 10.1039/d3sm00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Graphene quantum dots (GQDs) are prepared and characterized via X-ray diffraction (XRD), UV-Visible spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL). GQDs are doped (5 mg and 10 mg) in the lyotropic liquid crystalline (LLC) lamellar and hexagonal phases to prepare GQD/LLC nanocolloids. Polarizing optical microscopy and X-ray diffraction measurement reveals that GQDs do not affect the lamellar and hexagonal LLC structures and may organize on their interface. Pure LLC phases and nanocolloids are studied for steady and dynamic rheological behavior. LLC phases and GQD/LLC nanocolloids possess shear thinning and frequency dependent liquid viscoelastic behavior. A complex moduli study of LLCs and GQD/LLC nanocolloids is carried out which indicates the gel to viscous transition in LLCs and GQD/LLC nanocolloids as a function of frequency. LLC phases and GQD/LLC nanocolloids are tested for antibacterial activity against Listeria ivanovii. The effect of surfactant concentration, LLC phase geometry and GQD concentration has been studied and discussed. A probable mechanism for the strong antimicrobial activity of LLCs and GQD/LLC nanocolloids is presented considering intermolecular interactions. The viscoelastic behavior and strong antibacterial activity (inhibition zone 49.2 mm) of LLCs and GQD/LLC nanocolloids make them valuable candidates for lubrication, cleaning, cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Prayas Singh
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Farheen
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana, 122103, India
| | - Surbhi Sachdev
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Samta Manori
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Sumit Bhardwaj
- Department of Physics, Chandigarh University, Chandigarh, 140413, India
| | - Havagiray Chitme
- School of Pharmaceutical & Populations Health Informatics, Department of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Ashish Sharma
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | | | - Ravi K Shukla
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| |
Collapse
|