1
|
Yu X, Pavlov DI, Ryadun AA, Kovalenko KA, Potapov AS, Fedin VP. Microporous Eu-MOF with Short 1,2,5-Thiadiazole-3,4-dicarboxylate Linkers: Luminescence Sensing of Nitrofuran Antibiotics and Gas Adsorption Performance. Inorg Chem 2025; 64:6356-6364. [PMID: 40102062 DOI: 10.1021/acs.inorgchem.5c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Lanthanide metal-organic frameworks combine the luminescent properties of rare earth elements with the structural tunability of molecular frameworks, making them ideal for multifunctional applications, such as luminescence sensing and gas separation. Herein, we report the synthesis of a red luminescent microporous Eu-MOF {[Eu2(H2O)L3]·3H2O}n using 1,2,5-thiadiazole-3,4-dicarboxylic acid (H2L) as the sole ligand. The H2L ligand features an effective antenna effect for energy transfer and structural rigidity, enabling the formation of a robust microporous framework. Detailed structural analysis revealed its highly ordered microporosity. The Eu-MOF exhibited excellent luminescence sensing performance for detecting nitrofuran antibiotics, including nitrofurantoin (NFN) and nitrofurazone (NTZ), demonstrating high selectivity, low detection limits, and short sensing response time (both within 6 s). Furthermore, the microporous structure of Eu-MOF endowed it with exceptional adsorption properties, enabling effective methane-acetylene separation.
Collapse
Affiliation(s)
- Xiaolin Yu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dmitry I Pavlov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Andrei S Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Cui F, García-López V, Wang Z, Luo Z, He D, Feng X, Dong R, Wang X. Two-Dimensional Organic-Inorganic van der Waals Hybrids. Chem Rev 2025; 125:445-520. [PMID: 39692750 DOI: 10.1021/acs.chemrev.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications. Here, this review provides a comprehensive overview of the latest advancements in the chemical synthesis, structural characterization, and numerous applications of 2DOI-vdWhs. Firstly, we introduce the chemistry and the physical properties of the recently rising organic 2D crystals (O2DCs), which feature crystalline 2D nanostructures comprising carbon-rich repeated units linked by covalent/noncovalent bonds and exhibit strong in-plane extended π-conjugation and weak interlayer vdWs interaction. Simultaneously, representative inorganic 2D crystals (I2DCs) are briefly summarized. After that, the synthetic strategies will be systematically summarized, including synthesizing single-component O2DCs with dimensional control and their vdWhs with I2DCs. With these synthetic approaches, the control in the dimension, the stacking modes, and the composition of the 2DOI-vdWhs will be highlighted. Subsequently, a special focus will be given on the discussion of the optical and electronic properties of the single-component 2D materials and their vdWhs, which will be closely relevant to their structures, so that we can establish a general structure-property relationship of 2DOI-vdWhs. In addition to these physical properties, the (opto-)electronic devices such as transistors, photodetectors, sensors, spintronics, and neuromorphic devices as well as energy devices will be discussed. Finally, we provide an outlook to discuss the key challenges for the 2DOI-vdWhs and their future development. This review aims to provide a foundational understanding and inspire further innovation in the development of next-generation 2DOI-vdWhs with transformative technological potential.
Collapse
Affiliation(s)
- Fucai Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Víctor García-López
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Daowei He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Xinran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University, Suzhou 215163, China
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou 215163, China
- Suzhou Laboratory, Suzhou 215163, China
| |
Collapse
|
3
|
Lv Y, Lin C, Liu X, Liang J, Li Y, Yao Z, Xiang S, Chen B, Zhang Z. Differentiated Intra-Ligand Charge Transfer Boosting Multicolor Responsive MOF Heterostructures as Robust Anti-Counterfeiting Labels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412637. [PMID: 39539007 DOI: 10.1002/adma.202412637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Metal-organic framework (MOF) heterostructures with hybrid architectures and abundant functional sites possess great potential applications in advanced information security, yet still suffer from the harsh stimuli mechanisms with restrained emission control. Herein, the differentiated design strategy on intra-ligand charge transfer is first reported to realize smart-responsive multicolor MOF heterostructures as robust anticounterfeiting labels. Designed similar MOF blocks with the differentiated intra-ligand charge transfer are integrated via time-dependent epitaxial growth to form multicolor MOF heterostructures. Different numbers of electron-donating groups in MOF blocks offer distinct space regulation on the torsion of charge transfer ligands, which trigger the diverse responsive emissions under the same mild stimuli, thus generating multiple tunable color patterns in heterostructures. These spatial-resolved MOF heterostructures with stable multicolor responsive modes permit the encoding of fingerprint information, which further functions as robust anti-counterfeiting labels with high-security convert states. These results offer a promising route for the function-oriented exploitation of smart-responsive MOF heterosystems for advanced information anticounterfeiting.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Chenwei Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xinming Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
4
|
Lu Z, Zhao K, Guo H, Duan L, Sun H, Chen K, Liu J. In Situ Construction of NiCoMn-LDH Derived from Zeolitic Imidazolate Framework on Eggshell-Like Carbon Skeleton for High-Performance Flexible Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309814. [PMID: 38155521 DOI: 10.1002/smll.202309814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Active compounds based on LDH (ternary layered double hydroxide) are considered the perfect supercapacitor electrode materials on account of their superior electrochemical qualities and distinct structural characteristics, and flexible supercapacitors are an ideal option as an energy source for wearable electronics. However, the prevalent aggregation effect of LDH materials results in significantly compromised actual specific capacitance, which limits its broad practical applications. In this research, a 3D eggshell-like interconnected porous carbon (IPC) framework with confinement and isolation capability is designed and synthesized by using glucose as the carbon source to disperse the LDH active material and enhance the conductivity of the composite material. Second, by constructing NiCoMn-LDH nanocage structure based on ZIF-67 (zeolitic imidazolate framework-67) at the nanometer scale the obtained IPC/NiCoMn-LDH electrode material can expose more active sites, which allows to achieve excellent specific capacitance (2236 F g-1/ 310.6 mAh g-1 at 1 A g-1), good rate as well as the desired cycle stability (85.9% of the initial capacitance upon 5000 cycles test). The constructed IPC/NiCoMn-LDH//IPC ASC (asymmetric supercapacitor) exhibits superior capacitive property (135 F g-1/60.1 mAh g-1 at 0.5 A g-1) as well as desired energy density (40 Wh kg-1 at 800 W kg-1).
Collapse
Affiliation(s)
- Zhongqi Lu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Kai Zhao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Lejiao Duan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Huiru Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Kuiyong Chen
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong, 276000, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| |
Collapse
|