1
|
Liu Y, Zhang W, Li M, Zhao Y, Zhao X, Yuan K. Noncovalent interactions and properties of host-guest systems based on C82/C82Gd bucky-balls and symmetry broken nanohoop TP-[11]CPP. J Chem Phys 2025; 162:094303. [PMID: 40035581 DOI: 10.1063/5.0255637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
The nanoscale host-guest interactions between a symmetry broken carbonaceous nanohoop TP-[11]cycloparaphenylene (TP-[11]CPP) and endohedral metallofullerene (EMF) C82Gd were explored by using density functional theory calculations. The geometry mutual-matching between TP-[11]CPP and C82Gd is perfect, and the two main configurations of TP-[11]CPP@C82Gd host-guest complexes could be formed spontaneously with high binding energies. Interestingly, the position of the Gd atom in the C82 cage can be adjusted by its external host molecule. The binding strength depends on the structure of the host, but the binding thermodynamics is decided by the structure of the fullerene cage. The selective binding of empty cage C82 from its mixture with EMF C82Gd is discussed by using a standard Boltzmann expression of statistical thermodynamics. In addition, the FT-IR and UV-visible spectra are simulated, host-guest noncovalent interaction regions are investigated based on the electron density and reduced density gradient, and magnetic susceptibility is preliminarily investigated, which may be helpful for a deep understanding of the present host-guest systems in the future. It is anticipated that such a theoretical calculation regarding to carbonaceous nanosize host-guest structures would be a driven force for the developments of novel nanohoop@EMF systems in functional materials, nonchromatographic separation and even nano single molecular electret devices.
Collapse
Affiliation(s)
- Yanzhi Liu
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gansu Province, Tianshui Normal University, Tianshui 741001, China
| | - Wenbo Zhang
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gansu Province, Tianshui Normal University, Tianshui 741001, China
| | - Mengyang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yaoxiao Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Xiang Zhao
- Institute of Molecular Science and Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Key Laboratory for New Molecule Materials Design and Function of Gansu Universities, Key Laboratory of Advanced Optoelectronic Functional Materials of Gansu Province, Tianshui Normal University, Tianshui 741001, China
| |
Collapse
|
2
|
Sun Z, Tang H, Wang L, Cao D. Advances in Chiral Macrocycles: Molecular Design and Applications. Chemistry 2025; 31:e202404217. [PMID: 39673369 DOI: 10.1002/chem.202404217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Chiral macrocycles have recently emerged as promising materials for enantioselective recognition, asymmetric catalysis, and circularly polarized luminescence (CPL) due to their terminal-free structure, preorganized chiral cavities, and unique host-guest and self-assembly properties. This review summarizes recent advances in the design and synthesis of chiral macrocycles with central, axial, helical, and planar chirality, each imparting distinct structural and chiroptical characteristics. We highlight key strategies for constructing these macrocycles and their applications in optoelectronic and catalytic systems. Emphasis is placed on the balance between rigidity and flexibility in macrocycle design, essential for effective molecular recognition, adaptable catalysis, and CPL. We conclude with perspectives on future opportunities, anticipating ongoing developments in chiral macrocycle research.
Collapse
Affiliation(s)
- Zhihong Sun
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
3
|
Li G, Mao LL, Gao JN, Shi X, Huo ZY, Yang J, Zhou W, Li H, Yang HB, Tung CH, Wu LZ, Cong H. A Helical Tubular Dyad of [9]Cycloparaphenylene: Synthesis, Chiroptical Properties and Post-Functionalization. Angew Chem Int Ed Engl 2025; 64:e202419435. [PMID: 39582429 DOI: 10.1002/anie.202419435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
The bottom-up synthesis of discrete tubular molecules that mimic the structural features of carbon nanotubes has been a long-standing pursuit for synthetic chemists. As the shortest segments of armchair-type carbon nanotubes, cycloparaphenylenes are regarded as ideal macrocyclic building blocks for achieving this goal. Here we report the synthesis of a helical tubular molecule featuring three diyne linkers between two site-specifically functionalized [9]cycloparaphenylenes. Its C3-symmetrical, radially conjugated structure and solid-state packing have been elucidated by spectroscopic and crystallographic characterizations. Notably, the resolved enantiomers display a circularly polarized luminescence brightness value of 1.47×103 M-1 cm-1, which is among the highest values for chiral organic molecules. Furthermore, the diyne-linked molecule could be directly converted into a thiophene-linked helical molecule, demonstrating the post-functionalization approach for the construction of chiral tubular molecules from cycloparaphenylenes.
Collapse
Affiliation(s)
- Gaolei Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang-Liang Mao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zi-Ye Huo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingxuan Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Hongwei Li
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Guo S, Liu L, Liu L, Fan Y, Yang H, He J, Wang Y, Bo Z, Xu X, Chen X, Jiang H. Naphthalene Diimide-Embedded Donor-Acceptor Carbon Nanohoops: Photophysical, Photoconductive, and Charge Transport Properties. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5202-5212. [PMID: 39782881 DOI: 10.1021/acsami.4c19349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops NDI-[n]CPP (n = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and [n]cycloparaphenylenes ([n]CPPs) moieties as donors. The D-A characteristics of NDI-[7-9]CPPs were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis. The device investigations demonstrated that the D-A nanohoops NDI-[7-9]CPPs can serve as the photoconductive layer and demonstrate a significant generation of photocurrent with a fast response upon exposure to light. The magnitude of photocurrent shows high dependence on the size of their rings, with an increasing tendency as the ring size decreases. The generation of photocurrent in free acceptor-based CPP has rarely been reported in the previous literature. Significantly, the C60 complexes of NDI-[7-9]CPPs exhibited a marked enhancement in photocurrent under identical conditions; in particular, the photocurrent of C60⊂NDI-[7]CPP is ca. 3.5 times greater than that of NDI-[7]CPP alone. Furthermore, the potential applications of NDI-[7-9]CPPs in electron- and hole-transport devices have also been explored, revealing the clear evidence of their bipolar behavior as an active charge transport layer.
Collapse
Affiliation(s)
- Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Linshan Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yanqing Fan
- Department of Chemistry, Xinjiang Normal University, Urumqi 830054, China
| | - Huiji Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinjun Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Li X, Liu L, Jia L, Lian Z, He J, Guo S, Wang Y, Chen X, Jiang H. Acceptor engineering of quinone-based cycloparaphenylenes via post-synthesis for achieving white-light emission in single-molecule. Nat Commun 2025; 16:467. [PMID: 39775102 PMCID: PMC11707345 DOI: 10.1038/s41467-025-55895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction. Fluorescence investigations reveal that the quinone-based [10]CPPs display distinctive acceptor-dependent dual-emission from both the locally excited state and charge transfer state after single-wavelength excitation in organic solvents, consequently leading to multicolor emissions, in particular, white-light emission in CHCl3 for Aq[10]CPP. In THF/water mixture, quinone-based [10]CPPs and oxTh[10]CPP display a wide range of fluorescence emissions including white-light emission as increasing the fraction of water, accompanying by the formation of nanoparticles as demonstrated by Tyndall effect and SEM. Interestingly, the fluorescence of Aq[10]CPP can be switched from white to blue in CHCl3 upon redox. Our investigations demonstrate that acceptor engineering not only endows quinone-based [10]CPPs with two distint emissive states for achieving white-light emission but also highlights an effective post-synthetic strategy for functionalizing CPP nanohoops with desirable properties.
Collapse
Affiliation(s)
- Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Luyang Jia
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| |
Collapse
|
6
|
Chu Z, Liu H, Wu T, Wang C, Wei WM, Zheng RH, Lu D, Liu R. Synthesis and Photophysical Properties of Small Helical Carbon Nanohoops Combined with Computational Studies on Racemization Pathway. Chempluschem 2024; 89:e202400359. [PMID: 39021324 DOI: 10.1002/cplu.202400359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
We herein report the facile synthesis of two helical carbon nanorings with small ring sizes, cyclo[6]paraphenylene-1,5-naphthylene ([6]CPPNap1,5), and cyclo[6]paraphenylene-1,5-anthrylene ([6]CPPAn1,5). The structures were determined by NMR and HR-MS. X-ray single-crystal data of [6]CPPNap1,5 was also achieved. The strain energy and racemization processes were investigated by DFT calculations. The reduced ring sizes result in increased ring strain and elevated energy barriers. The photophysical properties were studied by UV-Vis absorption, fluorescence emission, and time-resolved fluorescence decay.
Collapse
Affiliation(s)
- Zhuping Chu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei Anhui Province, 230032, P. R. China
| | - Hengxin Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei Anhui Province, 230032, P. R. China
| | - Tianlu Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei Anhui Province, 230032, P. R. China
| | - Chen Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei Anhui Province, 230032, P. R. China
| | - Wen-Mei Wei
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| | - Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing, 100190, P. R. China
| | - Dapeng Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei Anhui Province, 230032, P. R. China
| | - Rui Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, 230032, P. R. China
| |
Collapse
|
7
|
Zhu KL, Li ZA, Liang J, Zou KL, Shen YJ, Gong HY. The Effects of Pore Defects in π-Extended Pentadecabenzo[9]helicene. Angew Chem Int Ed Engl 2024; 63:e202409713. [PMID: 39031452 DOI: 10.1002/anie.202409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The introduction of precise pore defects into nanocarbon structures results in the emergence of distinct physicochemical characteristics. However, there is a lack of research on non-planar chiral nanographene involving precise pore defects. Herein, we have developed two analogues to the π-extended pentadecabenzo[9]helicene (EP9H) containing embedded pore defects. Each molecules, namely extended dodecabenzo[7]helicene (ED7H; 1) or extended nonabenzo[5]helicene (EN5H; 2), exhibits dual-state emission. Significantly, the value of |glum| of 1 is exceptionally high at 1.41×10-2 in solution and BCPL as 254 M-1 cm-1. In PMMA film, |glum| of 1 is 8.56×10-3, and in powder film, it is 5.00×10-3. This study demonstrates that nanocarbon molecules with pore defects exhibit dual-state emission properties while maintaining quite good chiral luminescence properties. It was distinguished from the aggregation-caused quenching (ACQ) effect corresponding to the nanocarbon without embedded defect. Incorporating pore defects into chiral nanocarbon molecules also simplifies the synthesis process and enhances the solubility of the resulting product. These findings suggest that the introduction of pore defects can be a viable approach to improve nanocarbon molecules.
Collapse
Affiliation(s)
- Ke-Lin Zhu
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Zhi-Ao Li
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Jiaqi Liang
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Kang-Li Zou
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875, China
| |
Collapse
|
8
|
Zhou Y, Zhang X, Yuan B, Lu D, Zhuang GL, Du P. Enantiomerically Resolvable Inherent Chirality Induced by Strong Para-Steric Hindrance in Cycloparaphenylene-Based Carbon Nanohoops. Org Lett 2024; 26:5635-5639. [PMID: 38958212 DOI: 10.1021/acs.orglett.4c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The chemical modification of the achiral carbon nanohoops to break the symmetry will result in inherently chiral structures with interesting optical properties. Herein, we report two novel π-extended chiral macrocycles, cyclo[10]paraphenylene-pyrene ([10]CPP-2Pyrene) and cyclo[10]paraphenylene-hexa-peri-hexabenzocoronene ([10]CPP-2HBC). The large substituents on the nanohoop peripheries effectively prevented free rotation and the racemization process. The conformation of each enantiomer is stable enough to be resolved by recycling HPLC.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xinyu Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bing Yuan
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Dapeng Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Gui-Lin Zhuang
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Fan Y, He J, Guo S, Jiang H. Host-Guest Chemistry in Binary and Ternary Complexes Utilizing π-Conjugated Carbon Nanorings. Chempluschem 2024; 89:e202300536. [PMID: 38123532 DOI: 10.1002/cplu.202300536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
The carbon nanorings, possessing a radial π system, have garnered significant attention primarily due to their size-dependent photophysical properties and the presence of a unique curved π-conjugated cavity. This is evidenced by the rapid proliferation of publications. Furthermore, the integration of building blocks into CPP skeletons can confer [n]CPPs with novel and exceptional photophysical and electronic characteristics, as well as chiral properties and host-guest interactions, thereby augmenting the diversity of [n]CPPs. Notably, the curved π surface structures and concave cavity of carbon nanorings enable them to host aromatic or non-aromatic guests with a complementarily curved surface, resulting in interesting binary or ternary complexes. This review provides a comprehensive treatment of literature reports on binary and ternary complexes, focusing on both their host-guest interactions and properties. It is important to note that the scope of this review is limited to host-guest chemistry in binary and ternary complexes based on π-conjugated carbon nanorings.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
10
|
Watanabe K, Tsurumaki E, Hasegawa M, Toyota S. Structure and Chiroptical Properties of Anthra[1,2-a]anthracene-1-yl Dimers as New Biaryls. Chemistry 2024; 30:e202400929. [PMID: 38554080 DOI: 10.1002/chem.202400929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/01/2024]
Abstract
Dimers of anthra[1,2-a]anthracene-1-yl units and its mesityl derivative were synthesized by Ni(0)-mediated coupling of the corresponding chloro derivatives as new biaryls. The X-ray analysis and DFT calculations revealed that two polycyclic aromatic units with nonplanar deformations took a twisted conformation about the single bond as a chiral axis. Enantiomers of the nonsubstituted compound were resolved by chiral HPLC, and the enantiopure samples showed intense Cotton effects at 321 nm in the circular dichroism (CD) spectra and emission bands at 449 nm in the circularly polarized luminescence (CPL) spectra with dissymmetry factor of |glum| 3.6×10-3. The absolute stereochemistry of this biaryl was determined by the theoretical calculation of CD spectrum by the time-dependent DFT method. The barrier to enantiomerization was determined to be 108 kJ mol-1 at 298 K. The dynamic process proceeded via a stepwise mechanism involving the helical inversion of each aromatic unit and the rotation about the biaryl axis as analyzed by the DFT calculations.
Collapse
Affiliation(s)
- Kota Watanabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masashi Hasegawa
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
Kong X, Zhang X, Yuan B, Zhang W, Lu D, Du P. Synthesis and Photophysical Properties of a Chiral Carbon Nanoring Containing Rubicene. J Org Chem 2024. [PMID: 38771292 DOI: 10.1021/acs.joc.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein we report the construction of an inherently chiral carbon nanoring, cyclo[7]paraphenylene-2,9-rubicene ([7]CPPRu2,9), by combining rubicene with a C-shaped synthon through the Suzuki-Miyaura coupling reaction. The structure was fully confirmed by high-resolution mass spectroscopies (HR-MS) and various NMR techniques. The photophysical properties were investigated by UV-vis absorption and fluorescence spectroscopy as well as the time-resolved fluorescence decay. Moreover, two enantiomers (M)/(P)-[7]CPPRu2,9 were successfully resolved by recyclable HPLC and studied by CD and CPL spectra.
Collapse
Affiliation(s)
- Xin Kong
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Xinyu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Bing Yuan
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Wen Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| | - Dapeng Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P. R. China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, P. R. China
| |
Collapse
|
12
|
Guo S, Liu L, Su F, Yang H, Liu G, Fan Y, He J, Lian Z, Li X, Guo W, Chen X, Jiang H. Monitoring Hierarchical Assembly of Ring-in-Ring and Russian Doll Complexes Based on Carbon Nanoring by Förster Resonance Energy Transfer. JACS AU 2024; 4:402-410. [PMID: 38425918 PMCID: PMC10900207 DOI: 10.1021/jacsau.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
We presented the construction of the ring-in-ring and Russian doll complexes on the basis of triptycene-derived carbon nanoring (TP-[12]CPP), which not only acts as a host for pillar[5]arene (P5A) but also serves as an energy donor for building Förster resonance energy transfer (FRET) systems. We also demonstrated that their hierarchical assembly processes could be efficiently monitored in real time using FRET. NMR, UV-vis and fluorescence, and mass spectroscopy analyses confirmed the successful encapsulation of the guests P5A/P5A-An by TP-[12]CPP, facilitated by C-H···π and ···π interactions, resulting in the formation of a distinct ring-in-ring complex with a binding constant of Ka = 2.23 × 104 M-1. The encapsulated P5A/P5A-An can further reverse its role to be a host for binding energy acceptors to form Russian doll complexes, as evidenced by the occurrence of FRET and mass spectroscopy analyses. The apparent binding constant of the Russian doll complexes was up to 3.6 × 104 M-1, thereby suggesting an enhanced synergistic effect. Importantly, the Russian doll complexes exhibited both intriguing one-step and sequential FRET dependent on the subcomponent P5A/P5A-An during hierarchical assembly, reminiscent of the structure and energy transfer of the light-harvesting system presented in purple bacteria.
Collapse
Affiliation(s)
- Shengzhu Guo
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Lin Liu
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Feng Su
- College
of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Huiji Yang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Guoqin Liu
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Yanqing Fan
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Jing He
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhe Lian
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiaonan Li
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Weijie Guo
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xuebo Chen
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Hua Jiang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|