1
|
Barati Sedeh H, Litchinitser NM. Singular optics empowered by engineered optical materials. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2687-2716. [PMID: 39635480 PMCID: PMC11501551 DOI: 10.1515/nanoph-2023-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/26/2023] [Indexed: 12/07/2024]
Abstract
The rapid development of optical technologies, such as optical manipulation, data processing, sensing, microscopy, and communications, necessitates new degrees of freedom to sculpt optical beams in space and time beyond conventionally used spatially homogenous amplitude, phase, and polarization. Structuring light in space and time has been indeed shown to open new opportunities for both applied and fundamental science of light. Rapid progress in nanophotonics has opened up new ways of "engineering" ultra-compact, versatile optical nanostructures, such as optical two-dimensional metasurfaces or three-dimensional metamaterials that facilitate new ways of optical beam shaping and manipulation. Here, we review recent progress in the field of structured light-matter interactions with a focus on all-dielectric nanostructures. First, we introduce the concept of singular optics and then discuss several other families of spatially and temporally structured light beams. Next, we summarize recent progress in the design and optimization of photonic platforms, and then we outline some new phenomena enabled by the synergy of structured light and structured materials. Finally, we outline promising directions for applications of structured light beams and their interactions with engineered nanostructures.
Collapse
Affiliation(s)
- Hooman Barati Sedeh
- Department of Electrical and Computer Engineering, Duke University, 27708Durham, NC, USA
| | | |
Collapse
|
2
|
Wang L, Liu H, Zhuang J, Wang D. Small‐Scale Big Science: From Nano‐ to Atomically Dispersed Catalytic Materials. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ligang Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Huan Liu
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiahao Zhuang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
3
|
Zhou L, Zhang N, Hsu CC, Singer M, Zeng X, Li Y, Song H, Jornet J, Wu Y, Gan Q. Super-Resolution Displacement Spectroscopic Sensing over a Surface "Rainbow". ENGINEERING (BEIJING, CHINA) 2022; 17:75-81. [PMID: 38149108 PMCID: PMC10751035 DOI: 10.1016/j.eng.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Subwavelength manipulation of light waves with high precision can enable new and exciting applications in spectroscopy, sensing, and medical imaging. For these applications, miniaturized spectrometers are desirable to enable the on-chip analysis of spectral information. In particular, for imaging-based spectroscopic sensing mechanisms, the key challenge is to determine the spatial-shift information accurately (i.e., the spatial displacement introduced by wavelength shift or biological or chemical surface binding), which is similar to the challenge presented by super-resolution imaging. Here, we report a unique "rainbow" trapping metasurface for on-chip spectrometers and sensors. Combined with super-resolution image processing, the low-setting 4× optical microscope system resolves a displacement of the resonant position within 35 nm on the plasmonic rainbow trapping metasurface with a tiny area as small as 0.002 mm2. This unique feature of the spatial manipulation of efficiently coupled rainbow plasmonic resonances reveals a new platform for miniaturized on-chip spectroscopic analysis with a spectral resolution of 0.032 nm in wavelength shift. Using this low-setting 4× microscope imaging system, we demonstrate a biosensing resolution of 1.92 × 109 exosomes per milliliter for A549-derived exosomes and distinguish between patient samples and healthy controls using exosomal epidermal growth factor receptor (EGFR) expression values, thereby demonstrating a new on-chip sensing system for personalized accurate bio/chemical sensing applications.
Collapse
Affiliation(s)
- Lyu Zhou
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Nan Zhang
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Chang Chieh Hsu
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Matthew Singer
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Xie Zeng
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yizheng Li
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Haomin Song
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Josep Jornet
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yun Wu
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Qiaoqiang Gan
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
- Material Science Engineering Program, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Peng Y, Liu E, Yan B, Xie J, Shi A, Peng P, Li H, Liu J. Higher-order topological states in two-dimensional Stampfli-Triangle photonic crystals. OPTICS LETTERS 2022; 47:3011-3014. [PMID: 35709038 DOI: 10.1364/ol.457058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
In this Letter, the higher-order topological state (HOTS) and its mechanism in two-dimensional Stampfli-Triangle (2D S-T) photonic crystals (PhCs) is explored. The topological corner states (TCSs) in 2D S-T PhCs are based on two physical mechanisms: one is caused by the photonic quantum spin Hall effect (PQSHE), and the other is caused by the topological interface state. While the former leads to the spin-direction locked effect which can change the distribution of the TCSs, the latter is conducive to the emergence of multiband TCSs in the same structure due to the characteristics of plentiful photonic bandgap (PBG) and broadband in 2D S-T PhCs. These findings allow new, to the best of our knowledge, insight into the HOTS, and are significant to the future design of photonic microcavities, high-quality factor lasers, and other related integrated multiband photonic devices.
Collapse
|
5
|
Rider M, Buendía Á, Abujetas DR, Huidobro PA, Sánchez-Gil JA, Giannini V. Advances and Prospects in Topological Nanoparticle Photonics. ACS PHOTONICS 2022; 9:1483-1499. [PMID: 35607643 PMCID: PMC9121393 DOI: 10.1021/acsphotonics.1c01874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 05/28/2023]
Abstract
Topological nanophotonics is a new avenue for exploring nanoscale systems from visible to THz frequencies, with unprecedented control. By embracing their complexity and fully utilizing the properties that make them distinct from electronic systems, we aim to study new topological phenomena. In this Perspective, we summarize the current state of the field and highlight the use of nanoparticle systems for exploring topological phases beyond electronic analogues. We provide an overview of the tools needed to capture the radiative, retardative, and long-range properties of these systems. We discuss the application of dielectric and metallic nanoparticles in nonlinear systems and also provide an overview of the newly developed topic of topological insulator nanoparticles. We hope that a comprehensive understanding of topological nanoparticle photonic systems will allow us to exploit them to their full potential and explore new topological phenomena at very reduced dimensions.
Collapse
Affiliation(s)
- Marie
S. Rider
- Department
of Physics and Astronomy, University of
Exeter, Stocker Road, EX4 4QL, Devon, United Kingdom
| | - Álvaro Buendía
- Instituto
de Estructura de la Materia, Consejo Superior
de Investigaciones Científicas, Serrano 121, 28006 Madrid, Spain
| | - Diego R. Abujetas
- Physics
Department, Fribourg University, Chemin de Musée 3, 1700 Fribourg, Switzerland
| | - Paloma A. Huidobro
- Instituto
de Telecomunicações, Instituto
Superior Tecnico-University of Lisbon, Avenida Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - José A. Sánchez-Gil
- Instituto
de Estructura de la Materia, Consejo Superior
de Investigaciones Científicas, Serrano 121, 28006 Madrid, Spain
| | - Vincenzo Giannini
- Instituto
de Estructura de la Materia, Consejo Superior
de Investigaciones Científicas, Serrano 121, 28006 Madrid, Spain
- Centre
of Excellence ENSEMBLE3 sp. z o.o., Wolczynska 133, Warsaw, 01-919, Poland
- Technology
Innovation Institute, Masdar City 9639, Abu Dhabi, United Arab
Emirates
| |
Collapse
|