1
|
Abdel Aziz I, Gladisch J, Griggs S, Moser M, Biesmans H, Beloqui A, McCulloch I, Berggren M, Stavrinidou E. Drug delivery via a 3D electro-swellable conjugated polymer hydrogel. J Mater Chem B 2024; 12:4029-4038. [PMID: 38586978 DOI: 10.1039/d3tb02592f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, 20018, Gipuzkoa, Spain
| | - Johannes Gladisch
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Sophie Griggs
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - Hanne Biesmans
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | | | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| |
Collapse
|
2
|
Abdel Aziz I, Gladisch J, Musumeci C, Moser M, Griggs S, Kousseff CJ, Berggren M, McCulloch I, Stavrinidou E. Electrochemical modulation of mechanical properties of glycolated polythiophenes. MATERIALS HORIZONS 2024; 11:2021-2031. [PMID: 38372393 DOI: 10.1039/d3mh01827j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa 20018, Spain
| | - Johannes Gladisch
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| | - Chiara Musumeci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| | | | - Sophie Griggs
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden
| | | | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| |
Collapse
|
3
|
Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022; 10:7122-7131. [PMID: 35959561 PMCID: PMC9518646 DOI: 10.1039/d2tb00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.
Collapse
Affiliation(s)
- Lawrence Coles
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Pelumi W Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Nuzli Karam
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Christopher M Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|