1
|
Elbeltagi S, Al-Zharani M, Nasr FA, Ismail AM, El-Tohamy HM, Abdelbased KM, Eldin ZE. Multifunctional sorafenib-loaded MXene for enhanced cancer therapy: In vitro and in vivo study based on chemotherapy/photothermal therapy approach. Int J Pharm 2025; 674:125492. [PMID: 40118352 DOI: 10.1016/j.ijpharm.2025.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Cancer, characterized by uncontrolled cell proliferation, remains one of the deadliest diseases. Multifunctional hybrid nanosystems that combine drugs with photothermal therapy (PTT) offer enhanced tumor treatment options through localized thermal increase and smart drug delivery (SDD). MXene, a 2D inorganic nanomaterial consisting of titanium carbide (Ti3C2), has garnered significant interest for cancer applications. MXene was combined with the metal-organic framework MOF-UiO-67 to create MX-Uio-67. The anticancer drug sorafenib (SN) was then load onto MX-UiO-67 and coated with chitosan (CS) to form SN-MX-UiO-67@CS aiming to improve chemo-PTT mediated by near-infrared (NIR) laser irradiation. The release of SN from SN-MX-UiO-67@CS was studied at pH 4.6 and pH 7.4 conditions, both with and without NIR, over a period of 96 h. The cumulative release of SN from MX-UiO-67@CS reached 80.16 % at pH 7.4 and 93.77 % at pH 4.6 under NIR irradiation. MTT assay results demonstrated significant cytotoxicity against HepG2 cells, with SN-MX-UiO-67@CS (chemo-PTT) displaying an IC50 value of 22.4 µg/mL and achieving a necrosis was 36.1 % and apoptosis rate of 50.94 %, highlighting its potential as an effective anticancer agent. Furthermore, in vivo PTT via xenograft model and biodistribution studies were performed in healthy BALB/c mice under NIR. A bio-analytical technique was established utilizing HepG2 cells for the quantitative examination of SN in mice plasma, spleen, liver, heart, kidneys, tumor and lungs. A highly significant difference was observed in the plasma concentration-time curves and pharmacokinetic parameters of SN, SN-MX, and SN-MX-UiO-67following the intravenous administration of SN-MX-UiO-67@CS. Notably, the formulation exhibited higher key pharmacokinetic parameters, involving Cmax and AUC(0-72).
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt.
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia
| | - Fahd A Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia
| | - A M Ismail
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Hagar M El-Tohamy
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Khaled M Abdelbased
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| |
Collapse
|
2
|
Jain G, Chaurasia R, Kaur BP, Chowdhury OP, Roy H, Gupta RR, Biswas B, Chakrabarti S, Mukherjee M. Unleashing the antibacterial potential of ZIFs and their derivatives: mechanistic insights. J Mater Chem B 2025; 13:3270-3291. [PMID: 39935286 DOI: 10.1039/d4tb02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Antibiotic resistance presents an alarming threat to global health, with bacterial infections now ranking among the leading causes of mortality. To address this escalating challenge, strategies such as antibiotic stewardship, development of antimicrobial therapies, and exploration of alternative treatment modalities are imperative. Metal-organic frameworks (MOFs), acclaimed for their outstanding biocompatibility and in vivo biodegradability, are promising avenues for the synthesis of novel antibiotic agents under mild conditions. Among these, zeolitic imidazolate frameworks (ZIFs), a remarkable subclass of MOFs, have emerged as potent antibacterial materials; the efficacy of which stems from their porous structure, metal ion content, and tunable functionalized groups. This could be further enhanced by incorporating or encapsulating metal ions, such as Cu, Fe, Ti, Ag, and others. This perspective aims to underscore the potential of ZIFs as antibacterial agents and their underlying mechanisms including the release of metal ions, generation of reactive oxygen species (ROS), disruption of bacterial cell walls, and synergistic interactions with other antibacterial agents. These attributes position ZIFs as promising candidates for advanced applications in combating bacterial infections. Furthermore, we propose a novel approach for synthesizing ZIFs and their derivatives, demonstrating exceptional antibacterial efficacy against Escherichia coli and Staphylococcus aureus. By highlighting the benefits of ZIFs and their derivatives as antibacterial agents, this perspective emphasizes their potential to address the critical challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Geetika Jain
- Amity Institute of Nanotechnology, Amity University, Noida, UP 201313, India
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Radhika Chaurasia
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bani Preet Kaur
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | | | - Hiranmay Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Richa Rani Gupta
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Sandip Chakrabarti
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| | - Monalisa Mukherjee
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Noida, UP 201313, India.
| |
Collapse
|
3
|
Damian-Buda AI, Alipanah N, Bider F, Sisman O, Neščáková Z, Boccaccini AR. Metal-organic framework (MOF)-bioactive glass (BG) systems for biomedical applications - A review. Mater Today Bio 2025; 30:101413. [PMID: 39834480 PMCID: PMC11742841 DOI: 10.1016/j.mtbio.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities. Besides comparing MOFs and BGs, this review aims to present the latest achievements of different MOFs/BGs materials, with a particular focus on their complementary and synergistic properties. Key findings show that combining MOFs and BGs enables the development of composite materials with superior physicochemical and biological properties. Moreover, by choosing appropriate processing techniques, BGs and MOFs can be fabricated as scaffolds or coatings with fast mineralization ability and high corrosion resistance. In addition, incorporation of MOFs/BGs in hydrogels improves mechanical stability, bioactivity and antibacterial properties, while maintaining biocompatibility. The mechanisms behind the antibacterial properties, likely coming from the release of metal ions and organic ligands, are also discussed. Overall, this review highlights the current research directions and emerging trends in the synergistic use of MOFs and BGs for biomedical applications, which represents a novel strategy for developing a new family of advanced therapeutic materials.
Collapse
Affiliation(s)
- Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen–Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Nariman Alipanah
- FunGlass – Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50, Trenčín, Slovakia
| | - Faina Bider
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen–Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Orhan Sisman
- FunGlass – Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50, Trenčín, Slovakia
| | - Zuzana Neščáková
- FunGlass – Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50, Trenčín, Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen–Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Liu H, Xing F, Yu P, Shakya S, Peng K, Liu M, Xiang Z, Ritz U. Integrated design and application of stimuli-responsive metal-organic frameworks in biomedicine: current status and future perspectives. J Mater Chem B 2024; 12:8235-8266. [PMID: 39058314 DOI: 10.1039/d4tb00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In recent years, metal-organic frameworks (MOFs) have garnered widespread attention due to their distinctive attributes, such as high surface area, tunable properties, biodegradability, extremely low density, high loading capacity, diverse chemical functionalities, thermal stability, well-defined pore sizes, and molecular dimensions. Increasingly, biomedical researchers have turned their focus towards their multifaceted development. Among these, stimuli-responsive MOFs, with their unique advantages, have captured greater interest from researchers. This review will delve into the merits and drawbacks of both endogenous and exogenous stimuli-responsive MOFs, along with their application directions. Furthermore, it will outline the characteristics of different synthesis routes of MOFs, exploring various design schemes and modification strategies and their impacts on the properties of MOF products, as well as how to control them. Additionally, we will survey different types of stimuli-responsive MOFs, discussing the significance of various MOF products reported in biomedical applications. We will categorically summarize different strategies such as anticancer therapy, antibacterial treatment, tissue repair, and biomedical imaging, as well as insights into the development of novel MOFs nanomaterials in the future. Finally, this review will conclude by summarizing the challenges in the development of stimuli-responsive MOFs in the field of biomedicine and providing prospects for future research endeavors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Kun Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiang Xi, China
| | - Ming Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
- Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
5
|
Akhtar H, Amara U, Mahmood K, Hanif M, Khalid M, Qadir S, Peng Q, Safdar M, Amjad M, Saif MZ, Tahir A, Yaqub M, Khalid K. Drug carrier wonders: Synthetic strategies of zeolitic imidazolates frameworks (ZIFs) and their applications in drug delivery and anti-cancer activity. Adv Colloid Interface Sci 2024; 329:103184. [PMID: 38781826 DOI: 10.1016/j.cis.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
With the rapid advancement of nanotechnology, stimuli-responsive nanomaterials have emerged as a feasible choice for the designing of controlled drug delivery systems. Zeolitic imidazolates frameworks are a subclass of Metal-organic frameworks (MOFs) that are recognized by their excellent porosity, structural tunability and chemical modifications make them promising materials for loading targeted molecules and therapeutics agents. The biomedical industry uses these porous materials extensively as nano-carriers in drug delivery systems. These MOFs not only possess excellent targeted imaging ability but also cause the death of tumor cells drawing considerable attention in the current framework of anticancer drug delivery systems. In this review, the outline of stability, porosity, mechanism of encapsulation and release of anticancer drug have been reported extensively. In the end, we also discuss a brief outline of current challenges and future perspectives of ZIFs in the biomedical world.
Collapse
Affiliation(s)
- Hamza Akhtar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Umay Amara
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, China.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Hanif
- Department of Pharmaceutics, faculty of Pharmacy, Bahauddin Zakariya University, Multan 608000, Pakistan.
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sobia Qadir
- Department of Physics, Govt. Graduate College of Science Multan, 6FFJ+55F, Bosan Rd, Multan, Pakistan
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Safdar
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Amjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Zubair Saif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aniqa Tahir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Kiran Khalid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
6
|
Zheng W, Meng Z, Zhu Z, Wang X, Xu X, Zhang Y, Luo Y, Liu Y, Pei X. Metal-Organic Framework-Based Nanomaterials for Regulation of the Osteogenic Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310622. [PMID: 38377299 DOI: 10.1002/smll.202310622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Indexed: 02/22/2024]
Abstract
As the global population ages, bone diseases have become increasingly prevalent in clinical settings. These conditions often involve detrimental factors such as infection, inflammation, and oxidative stress that disrupt bone homeostasis. Addressing these disorders requires exogenous strategies to regulate the osteogenic microenvironment (OME). The exogenous regulation of OME can be divided into four processes: induction, modulation, protection, and support, each serving a specific purpose. To this end, metal-organic frameworks (MOFs) are an emerging focus in nanomedicine, which show tremendous potential due to their superior delivery capability. MOFs play numerous roles in OME regulation such as metal ion donors, drug carriers, nanozymes, and photosensitizers, which have been extensively explored in recent studies. This review presents a comprehensive introduction to the exogenous regulation of OME by MOF-based nanomaterials. By discussing various functional MOF composites, this work aims to inspire and guide the creation of sophisticated and efficient nanomaterials for bone disease management.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
7
|
Wang Y, He L, Wang M, Yuan J, Wu S, Li X, Lin T, Huang Z, Li A, Yang Y, Liu X, He Y. The drug loading capacity prediction and cytotoxicity analysis of metal-organic frameworks using stacking algorithms of machine learning. Int J Pharm 2024; 656:124128. [PMID: 38621612 DOI: 10.1016/j.ijpharm.2024.124128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Metal-organic frameworks (MOFs) have shown excellent performance in the field of drug delivery. Despite the synthesis of a vast array of MOFs exceeding 100,000 varieties, certain formulations have exhibited suboptimal performance characteristics. Therefore, there is a pressing need to enhance their efficacy by identifying MOFs with superior drug loading capacities and minimal cytotoxicity, which can be achieved through machine learning (ML). In this study, a stacking regression model was developed to predict drug loading capacity and cytotoxicity of MOFs using datasets compiled from various literature sources. The model exhibited exceptional predictive capabilities, achieving R2 values of 0.907 for drug loading capacity and 0.856 for cytotoxicity. Furthermore, various model interpretation methods including partial dependence plots, individual conditional expectation, Shapley additive explanation, decision tree, random forest, CatBoost Regressor, and light gradient-boosting machine were employed for feature importance analysis. The results revealed that specific metal atoms such as Zn, Cr, Fe, Zr, and Cu significantly influenced the drug loading capacity and cytotoxicity of MOFs. Through model validation encompassing experimental validation and computational verification, the reliability of the model was thoroughly established. In general, it is a good practice to use ML methods for predicting drug loading capacity and cytotoxicity analysis of MOFs, guiding the development of future property prediction methods for MOFs.
Collapse
Affiliation(s)
- Yang Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Liqiang He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Siwei Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xiaojing Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Tong Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Zihui Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Andi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yuhang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Luo T, Jiang X, Li J, Nash GT, Yuan E, Albano L, Tillman L, Lin W. Phosphate Coordination to Metal-Organic Layer Secondary Building Units Prolongs Drug Retention for Synergistic Chemoradiotherapy. Angew Chem Int Ed Engl 2024; 63:e202319981. [PMID: 38381713 DOI: 10.1002/anie.202319981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemoradiotherapy combines radiotherapy with concurrent chemotherapy to potentiate antitumor activity but exacerbates toxicities and causes debilitating side effects in cancer patients. Herein, we report the use of a nanoscale metal-organic layer (MOL) as a 2D nanoradiosensitizer and a reservoir for the slow release of chemotherapeutics to amplify the antitumor effects of radiotherapy. Coordination of phosphate-containing drugs to MOL secondary building units prolongs their intratumoral retention, allowing for continuous release of gemcitabine monophosphate (GMP) for effective localized chemotherapy. In the meantime, the MOL sensitizes cancer cells to X-ray irradiation and provides potent radiotherapeutic effects. GMP-loaded MOL (GMP/MOL) enhances cytotoxicity by 2-fold and improves radiotherapeutic effects over free GMP in vitro. In a colon cancer model, GMP/MOL retains GMP in tumors for more than four days and, when combined with low-dose radiotherapy, inhibits tumor growth by 98 %. The synergistic chemoradiotherapy enabled by GMP/MOL shows a cure rate of 50 %, improves survival, and ameliorates cancer-proliferation histological biomarkers.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Luciana Albano
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Wang S, Liu Y, Quan C, Luan S, Shi H, Wang L. A metal-organic framework-integrated composite for piezocatalysis-assisted tumour therapy: design, related mechanisms, and recent advances. Biomater Sci 2024; 12:896-906. [PMID: 38234222 DOI: 10.1039/d3bm01944f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
With the growing need for more effective tumour treatment, piezocatalytic therapy has emerged as a promising approach due to its distinctive capacities to generate ROS through stress induction and regulate the hypoxic state of the TME. MOF-based piezocatalysts not only possess the benefits of piezocatalysis but also exhibit several advantages associated with MOFs, such as tunable pore size, large specific surface area, and good biocompatibility. Therefore, they are expected to become a powerful promoter of piezocatalytic therapy. This review elaborates on the fundamental principles of piezocatalysis and summarises recent advances in the piezocatalytic therapy and combination therapies of tumours, generalising the strategies for constructing piezocatalytic systems based on MOFs. Finally, the challenges confronted and future opportunities for the design and application of piezocatalytic MOF anticancer systems have been discussed.
Collapse
Affiliation(s)
- Shuteng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yifan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhua Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
10
|
Liu X, Li Y, Tan C, Chen Z, Yang H, Wang X. Highly Selective Extraction of U(VI) from Solutions by Metal Organic Framework-Based Nanomaterials through Sorption, Photochemistry, and Electrochemistry Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18696-18712. [PMID: 38079289 DOI: 10.1021/acs.langmuir.3c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
With the rapid development of nuclear technology and peaceful utilization of nuclear energy, plentiful U(VI) not only is required to be extracted from solutions for a sustainable nuclear fuel supply but also is inevitably released into the surrounding environment to result in pollution and threaten human health. Thereby, realizing selective extraction of U(VI) from aqueous solutions is crucial for U(VI) pollution control and a sustainable nuclear industry. Metal organic frameworks (MOFs) have gained multidisciplinary attention due to their excellent properties including large specific surface areas, tunable pore structures, easy functionalization, etc. This Review comprehensively summarizes the research progress of MOFs and MOF-based materials on U(VI) removal from aqueous solutions by sorption, photocatalysis, electrocatalysis, membrane separation, etc. The efficient high extraction ability is dependent on the intrinsic properties of MOFs and the techniques used. The removal properties of MOF-based materials as adsorbents, photocatalysts, and electrocatalysts for U(VI) are discussed. Information about the interaction mechanisms between U(VI) and MOF-based materials are analyzed in-depth, including experiments, theoretical calculations, and advanced spectroscopy analysis. The removal properties for U(VI) of various MOF-based materials are assessed through different techniques. Finally, a summary and perspective on the direction and challenges of MOF-based materials and various pollutant removal technologies are proposed to provide some significant information on designing and fabricating MOF-based materials for environmental pollution management.
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yang Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Chunhong Tan
- Huan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
11
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Review on nanocomposite materials from cellulose, chitosan, alginate, and lignin for removal and recovery of nutrients from wastewater. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100386. [DOI: 10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
|
12
|
Tan X, Namadchian M, Baghayeri M. Follow up of the prostate cancer treatment based on a novel sensing method for anti-prostate cancer drug (flutamide). ENVIRONMENTAL RESEARCH 2023; 238:117261. [PMID: 37775004 DOI: 10.1016/j.envres.2023.117261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
In this work, novel modified electrode (MXene/MIL-101(Cr)/GCE) are manufactured through simple layer-by-layer immobilization procedure. The fabricated electrochemical sensor was utilized for electrochemical sensing of flutamide in biological fluids. The immobilization of both MXene and metal-organic framework (MOF) materials on the electrode surface could improve the electrochemical performance of the modified glassy carbon electrode (GCE) towards flutamide due to the synergic effects. The established sensor illustrated the significant sensing ability for the determination of flutamide. The influence of solution pH and volume ratio of MXene/MIL-101(Cr) on electrochemical performance of the modified GCE was researched and optimized. The sensor demonstrated a favorable detection limit of 0.009 μM and a linear range of 0.025-100 μM using differential pulse voltammetry (DPV) technique. The suggested assay illustrated an excellent sensing efficiency towards flutamide in body fluids with recoveries ranging from 97.7% to 102.5%, which indicates its potential in real matrices. In addition, the MXene/MIL-101(Cr)/GCE was illustrated some advantages including simple preparation, good selectivity and reproducibility, and rapid flutamide detection.
Collapse
Affiliation(s)
- Xinyu Tan
- Faculty of Life Science and Medicine, King's College London, London, UK.
| | - Melika Namadchian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of MedicalSciences, Tehran, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran; Department of Natural Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
13
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Review on nanocomposite materials from cellulose, chitosan, alginate, and lignin for removal and recovery of nutrients from wastewater. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100386. [DOI: https:/doi.org/10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
|
14
|
Zhang Q, Yan S, Yan X, Lv Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165944. [PMID: 37543345 DOI: 10.1016/j.scitotenv.2023.165944] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of crystalline porous hybrid materials with high porosity, large specific surface area and adjustable channel structure and biocompatibility, which are being investigated with increasing interest for energy storage and conversion, gas adsorption/separation, catalysis, sensing and biomedicine. However, the practical applications of MOFs make them release into the environment inevitable, posing a threat to humans and organisms. In this article, we cover advances in the currently available MOFs synthesis methods and the emerging applications of MOFs, especially in the biomedical field (therapeutic agents and bioimaging). Additionally, after evaluating the current status of main exposure routes and affecting factors in the field of MOFs-toxicity, the molecular mechanism is also clarified and identified. Knowledge gaps are identified from such a summarization and frontier development are explored for MOFs. Afterwards, we also present the limitations, challenges, and future perspectives in the study of the entire life cycle of MOFs. This review emphasizes the need for a more targeted discussion of the latest, widely used and effective versatile material class in order to exploit the full potential of high-performance and non-toxicity MOFs in the future.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
15
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
16
|
Zhao T, Shu T, Lang J, Cui Z, Li P, Wang S. An Fe-organic framework/arginine-glycine-aspartate peptide-modified sensor for electrochemically detecting nitric oxide released from living cells. Biomater Sci 2023; 11:7579-7587. [PMID: 37772672 DOI: 10.1039/d3bm00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Nitric oxide (NO) is a crucial cell-signaling molecule utilized in numerous physiological and pathological processes. Monitoring cellular levels of NO requires a sensor with sufficient sensitivity, transient recording capability, and biocompatibility. Owing to the large surface area and high catalytic activity of the metal-organic framework, Fe-BTC was used for the modification of screen-printed electrodes (SPEs). This study investigates the electrochemical sensing of NO on modified SPEs. Additionally, the introduction of a cell-adhesive molecule, arginine-glycine-aspartate peptide (RGD), considerably improved the cytocompatibility, resulting in superior cell attachment and growth on the SPE. The Fe-BTC/RGD-modified SPE (Fe-BTC/RGD/SPE) exhibited electrocatalytic NO oxidation at 0.8 V, demonstrating a linear response with a detection limit of 11.88 nM over a wide concentration range (0.17-47.37 μM) and a response time of approximately 0.9 s. Subsequently, the as-obtained Fe-BTC/RGD/SPE was successfully utilized for the real-time detection of NO released from human endothelial cells cultured on the electrode. Therefore, the study undertaken shows remarkable potential of Fe-BTC/RGD/SPE for practical applications in biological processes and clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ting Shu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jinrong Lang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ziyu Cui
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ping Li
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Shi Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, PR China.
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, PR China
| |
Collapse
|
17
|
Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N, Bencherif SA. Mitigating Metal-Organic Framework (MOF) Toxicity for Biomedical Applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 471:144400. [PMID: 39280062 PMCID: PMC11394873 DOI: 10.1016/j.cej.2023.144400] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity. Although nearly ninety thousand MOFs have been investigated, evaluating and optimizing their physico-chemical properties in relevant biological systems remain critical for their clinical translation. In this review article, we first provide a brief classification of MOFs based on their chemical structures. We then conduct a comprehensive evaluation of in vitro and in vivo studies that assess the biocompatibility of MOFs. Additionally, we discuss various approaches to mitigate the critical factors associated with MOF toxicity. To this end, the effects of chemistry, particle size, morphology, and particle aggregation are examined. To better understand MOFs' potential toxicity to living organisms, we also delve into the toxicity mechanisms of nanoparticles (NPs). Furthermore, we introduce and evaluate strategies such as surface modification to reduce the inherent toxicity of MOFs. Finally, we discuss current challenges, the path to clinical trials, and new research directions.
Collapse
Affiliation(s)
- Paulina Wiśniewska
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150 Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109 Australia
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA 02155, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02155, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02155, USA
| |
Collapse
|
18
|
Zhao C, Shu C, Yu J, Zhu Y. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater Today Bio 2023; 21:100717. [PMID: 37545559 PMCID: PMC10401359 DOI: 10.1016/j.mtbio.2023.100717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.
Collapse
Affiliation(s)
- Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Chaoqin Shu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, 200336, PR China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
19
|
Wu X, Tan Y, Zhang J, Cui R, Liao C, Zhang S. Nanodrug constructed using dietary antioxidants for immunotherapy of metastatic tumors. J Mater Chem B 2023; 11:2916-2926. [PMID: 36892505 DOI: 10.1039/d2tb02773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Immunogenic cell death (ICD) induced by reactive oxygen species (ROS) represents a particular form of tumor cell death for approaching the problem of low immunogenicity of tumors in immunotherapy, while the oxidative damage to normal cells of current ICD inducers hinders their clinical application. Herein, a new ICD inducer VC@cLAV constructed solely by dietary antioxidants, lipoic acid (LA) and vitamin C (VC), is developed, which could promote heavy intracellular ROS production in cancer cells for ICD induction while acting as an anti-oxidant in non-cancer cells for cytoprotection, and thus hold high biosafety. In vitro studies show that VC@cLAV induced a release of antigens and a maturation rate of DCs up to 56.5%, approaching the positive control (58.4%). In vivo combined with αPD-1, VC@cLAV showed excellent antitumor activity against both primary and distant metastatic tumors with an inhibition rate of 84.8% and 79.0% compared to 14.2% and 10.0% in the αPD-1 alone group. Notably, VC@cLAV established a long-term antitumor immune memory effect against tumor rechallenging. This study not only presents a new kind of ICD inducer but also provides an impetus for the development of dietary antioxidant-based cancer drugs.
Collapse
Affiliation(s)
- Xiao Wu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yifeng Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Jing Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Rong Cui
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|