1
|
Zhao JW, Li Y, Luan D, Lou XW(D. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 PMCID: PMC11804782 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen (David) Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
2
|
Li K, Xia T, Deng R, Dou Y, Wang J, Li Q, Sun L, Huo L, Zhao H. Tuning A-Site Cation Deficiency in Pr 0.5La 0.5BaCo 2O 5+ δ Perovskite to Realize Large-Scale Hydrogen Evolution at 2000 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400760. [PMID: 38566543 DOI: 10.1002/smll.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Industrial-level hydrogen production from the water electrolysis requires reducing the overpotential (η) as much as possible at high current density, which is closely related to intrinsic activity of the electrocatalysts. Herein, A-site cation deficiency engineering is proposed to screen high-performance catalysts, demonstrating effective Pr0.5- xLa0.5BaCo2O5+ δ (P0.5- xLBC) perovskites toward alkaline hydrogen evolution reaction (HER). Among all perovskite compositions, Pr0.4La0.5BaCo2O5+ δ (P0.4LBC) exhibits superior HER performance along with unique operating stability at large current densities (J = 500-2000 mA cm-2 geo). The overpotential of ≈636 mV is achieved in P0.4LBC at 2000 mA cm-2 geo, which outperforms commercial Pt/C benchmark (≈974 mV). Furthermore, the Tafel slope of P0.4LBC (34.1 mV dec-1) is close to that of Pt/C (35.6 mV dec-1), reflecting fast HER kinetics on the P0.4LBC catalyst. Combined with experimental and theoretical results, such catalytic activity may benefit from enhanced electrical conductivity, enlarged Co-O covalency, and decreased desorption energy of H* species. This results highlight effective A-site cation-deficient strategy for promoting electrochemical properties of perovskites, highlighting potential water electrolysis at ampere-level current density.
Collapse
Affiliation(s)
- Kaiqian Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Tian Xia
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yingnan Dou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jingping Wang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qiang Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Liping Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
3
|
Zhai Z, Zhang C, Chen B, Liu L, Song H, Yang B, Zheng Z, Li J, Jiang X, Huang N. A Highly Active Porous Mo 2C-Mo 2N Heterostructure on Carbon Nanowalls/Diamond for a High-Current Hydrogen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:243. [PMID: 38334514 PMCID: PMC10856447 DOI: 10.3390/nano14030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Developing non-precious metal-based electrocatalysts operating in high-current densities is highly demanded for the industry-level electrochemical hydrogen evolution reaction (HER). Here, we report the facile preparation of binder-free Mo2C-Mo2N heterostructures on carbon nanowalls/diamond (CNWs/D) via ultrasonic soaking followed by an annealing treatment. The experimental investigations and density functional theory calculations reveal the downshift of the d-band center caused by the heterojunction between Mo2C/Mo2N triggering highly active interfacial sites with a nearly zero ∆GH* value. Furthermore, the 3D-networked CNWs/D, as the current collector, features high electrical conductivity and large surface area, greatly boosting the electron transfer rate of HER occurring on the interfacial sites of Mo2C-Mo2N. Consequently, the self-supporting Mo2C-Mo2N@CNWs/D exhibits significantly low overpotentials of 137.8 and 194.4 mV at high current densities of 500 and 1000 mA/cm2, respectively, in an alkaline solution, which far surpass the benchmark Pt/C (228.5 and 359.3 mV) and are superior to most transition-metal-based materials. This work presents a cost-effective and high-efficiency non-precious metal-based electrocatalyst candidate for the electrochemical hydrogen production industry.
Collapse
Affiliation(s)
- Zhaofeng Zhai
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
- School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China
| | - Chuyan Zhang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
| | - Bin Chen
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
- School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China
| | - Lusheng Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
| | - Haozhe Song
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
| | - Bing Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
- School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China
| | - Ziwen Zheng
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
- School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China
| | - Junyao Li
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
- Institute of Materials Engineering, University of Siegen, No. 9-11 Paul-Bonatz-Str., 57076 Siegen, Germany
| | - Nan Huang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road, Shenyang 110016, China; (Z.Z.); (C.Z.); (B.C.); (L.L.); (H.S.); (B.Y.); (Z.Z.); (J.L.)
- School of Materials Science and Engineering, University of Science and Technology of China, No. 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
4
|
Abstract
Electrocatalytic high-throughput seawater electrolysis for hydrogen production is a promising green energy technology that offers possibilities for environmental and energy sustainability. However, large-scale application is limited by the complex composition of seawater, high concentration of Cl- leading to competing reaction, and severe corrosion of electrode materials. In recent years, extensive research has been conducted to address these challenges. Metal nitrides (MNs) with excellent chemical stability and catalytic properties have emerged as ideal electrocatalyst candidates. This review presents the electrode reactions and basic parameters of the seawater splitting process, and summarizes the types and selection principles of conductive substrates with critical analysis of the design principles for seawater electrocatalysts. The focus is on discussing the properties, synthesis, and design strategies of MN-based electrocatalysts. Finally, we provide an outlook for the future development of MNs in the high-throughput seawater electrolysis field and highlight key issues that require further research and optimization.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoli Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Wei Y, Hao JG, Zhang JL, Huang WY, Ouyang SB, Yang K, Lu KQ. Integrating Co(OH) 2 nanosheet arrays on graphene for efficient noble-metal-free EY-sensitized photocatalytic H 2 evolution. Dalton Trans 2023; 52:13923-13929. [PMID: 37750679 DOI: 10.1039/d3dt02513f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The development of an efficient noble-metal-free cocatalyst is the key to photocatalytic hydrogen production technology. In this study, hierarchical Co(OH)2 nanosheet array-graphene (GR) composite cocatalysts are developed. With Eosin Y (EY) as a photosensitizer, the optimal Co(OH)2-10%GR hybrid cocatalyst presents excellent photocatalytic activity with an H2 production rate of 17 539 μmol g-1 h-1, and the apparent quantum yield for hydrogen production can reach 12.8% at 520 nm, which remarkably surpasses that of pure Co(OH)2 and most similar hybrid cocatalyst systems. Experimental investigations demonstrate that the excellent photocatalytic activity of Co(OH)2-GR arises from its unique nanosheet array architecture, which can collaboratively expose rich active sites for photocatalytic hydrogen evolution and facilitate the migration and separation of photogenerated charge carriers. It is desired that this study would supply a meaningful direction for the rational optimization of the constitute and structure of cocatalysts to achieve efficient photocatalytic hydrogen generation.
Collapse
Affiliation(s)
- Yu Wei
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Jin-Ge Hao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Jia-Lin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Wei-Ya Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Shao-Bo Ouyang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Kang-Qiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| |
Collapse
|
6
|
Makhoul E, Boulos M, Cretin M, Lesage G, Miele P, Cornu D, Bechelany M. CaCu 3Ti 4O 12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2119. [PMID: 37513130 PMCID: PMC10383651 DOI: 10.3390/nano13142119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants. These approaches rely on the generation of hydroxyl and sulfate radicals during electro-oxidation and sulfate activation, respectively. In addition, hybrid activation, in which these methods are combined, is interesting because of the synergistic effect of hydroxyl and sulfate radicals. Hybrid activation effectiveness in pollutant removal can be influenced by various factors, particularly the materials used for the anode. This review focuses on various organic pollutants. However, it focuses more on pharmaceutical pollutants, particularly paracetamol, as this is the most frequently detected emerging pollutant. It then discusses electro-oxidation, photocatalysis and sulfate radicals, highlighting their unique advantages and their performance for water treatment. It focuses on perovskite oxides as an anode material, with a particular interest in calcium copper titanate (CCTO), due to its unique properties. The review describes different CCTO synthesis techniques, modifications, and applications for water remediation.
Collapse
Affiliation(s)
- Elissa Makhoul
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Madona Boulos
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, 75231 Paris, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Gulf University for Science and Technology (GUST), West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
7
|
Zhou D, Le F, Jia W, Chen X. In Situ Exsolution of Ba 3(VO 4) 2 Nanoparticles on a V-Doped BaCoO 3-δ Perovskite Oxide with Enhanced Activity for Electrocatalytic Hydrogen Evolution. Inorg Chem 2023; 62:8001-8009. [PMID: 37167416 DOI: 10.1021/acs.inorgchem.3c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The successful preparation of a perovskite-based heterostructure is important for broadening the applications of perovskites in the field of electrocatalysis, especially in a hydrogen evolution reaction (HER). Nevertheless, the limited active sites of perovskites severely hindered the HER properties. Herein, an in situ exsolution method was used to construct a nanocomposite based on V-doped BaCoO3-δ decorated with Ba3(VO4)2 (BVCO19) for alkaline HER. The exsolved Ba3(VO4)2 can induce more Co4+ ions on BaCoO3-δ, which serves as active sites for the release of H2. Meanwhile, by regulating the valency of V and Co species, the catalyst can reach a charge balance by generating more oxygen vacancies, which greatly facilitates the adsorption and dissociation of H2O molecules. The synergistic effect between the oxygen vacancies and high-valence Co4+ leads to an enhanced HER performance of BVCO19. The as-obtained catalyst delivers a low overpotential of 194 mV at 10 mA cm-2 as well as impressive stability for 100 h in alkaline media, which outperforms pristine BaCoO3-δ and most of the nonprecious-based perovskite oxides. This work provides new insights into the preparation of perovskite-based heterostructure for boosting HER.
Collapse
Affiliation(s)
- Dehuo Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Fuhe Le
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Wei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Xianhao Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| |
Collapse
|
8
|
Yang M, Guo YX, Liu Z, Li XY, Huang Q, Yang XY, Ye CF, Li Y, Liu JP, Chen LH, Su BL, Wang YL. Engineering Rich Active Sites and Efficient Water Dissociation for Ni-Doped MoS 2/CoS 2 Hierarchical Structures toward Excellent Alkaline Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:236-248. [PMID: 36525334 DOI: 10.1021/acs.langmuir.2c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Besides improving charge transfer, there are two key factors, such as increasing active sites and promoting water dissociation, to be deeply investigated to realize high-performance MoS2-based electrocatalysts in alkaline hydrogen evolution reaction (HER). Herein, we have demonstrated the synergistic engineering to realize rich unsaturated sulfur atoms and activated O-H bonds toward the water for Ni-doped MoS2/CoS2 hierarchical structures by an approach to Ni doping coupled with in situ sulfurizing for excellent alkaline HER. In this work, the Ni-doped atoms are evolved into Ni(OH)2 during alkaline HER. Interestingly, the extra unsaturated sulfur atoms will be modulated into MoS2 nanosheets by breaking Ni-S bonds during the formation of Ni(OH)2. On the other hand, the higher the mass of the Ni precursor (mNi) for the fabrication of our samples, the more Ni(OH)2 is evolved, indicating a stronger ability for water dissociation of our samples during alkaline HER. Our results further reveal that regulating mNi is crucial to the HER activity of the as-synthesized samples. By regulating mNi to 0.300 g, a balance between increasing active sites and promoting water dissociation is achieved for the Ni-doped MoS2/CoS2 samples to boost alkaline HER. Consequently, the optimal samples present the highest HER activity among all counterparts, accompanied by reliable long-term stability. This work will promise important applications in the field of electrocatalytic hydrogen evolution in alkaline environments.
Collapse
Affiliation(s)
- Mian Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yu-Xin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhan Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiao-Yun Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Qing Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Cui-Fang Ye
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jin-Ping Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Li-Hua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Han W, Zhang F, Qiu L, Qian Y, Hao S, Li P, He Y, Zhang X. Interface engineering of hierarchical NiCoP/NiCoS x heterostructure arrays for efficient alkaline hydrogen evolution at large current density. NANOSCALE 2022; 14:15498-15506. [PMID: 36227106 DOI: 10.1039/d2nr04657a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of non-noble metal electrocatalysts with high activity and long-term stability for the hydrogen evolution reaction (HER), especially at large current density, is of great significance for industrial hydrogen production from water using renewable electricity. Constructing heterostructures with interfacial interactions is an effective strategy to improve the catalytic performance for large-current-density HER. Herein, we innovatively present a facile two-step electrodeposition method to immobilize a hierarchical NiCoP/NiCoSx heterostructure on Ni foam (NF) for alkaline HER. The strong interfacial coupling effect between NiCoP and NiCoSx not only offers abundant active sites for fast electrochemical reaction, but also enhances the charge transfer ability accompanied by high electrical conductivity. Consequently, the obtained self-supporting NiCoP/NiCoSx/NF exhibits an excellent catalytic performance with low overpotentials of 68, 144 and 222 mV to deliver current densities of 10, 100 and 500 mA cm-2 in 1 M KOH, along with good stability for more than 110 h, outperforming most of the reported non-noble metal based HER catalysts. Density functional theory (DFT) results further confirm that this bimetal phosphide/sulfide heterostructure can synergistically optimize the Gibbs free energy of H* during the HER process, thus accelerating the HER reaction kinetics. This work provides a new strategy toward the rational design of large-current-density electrocatalysts, which have great potential in practical large-scale hydrogen production.
Collapse
Affiliation(s)
- Weiwei Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Fan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Lingshu Qiu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Yang Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Ping Li
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| |
Collapse
|
10
|
Dong Z, Xia T, Li Q, Wang J, Li S, Sun L, Huo L, Zhao H. Addressing the origin of highly catalytic activity of A-site Sr-doped perovskite cathodes for intermediate-temperature solid oxide fuel cells. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Zhang L, Shi Z, Lin Y, Chong F, Qi Y. Design Strategies for Large Current Density Hydrogen Evolution Reaction. Front Chem 2022; 10:866415. [PMID: 35464231 PMCID: PMC9023860 DOI: 10.3389/fchem.2022.866415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance, cost-efficiency, and high performance for large current density industrial applications is vital for H2 production. However, most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm-2), which is far from satisfactory for industrial applications. In this minireview, we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER), whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed, including self-supporting electrodes to avoid the detachment of active materials, the superaerophobicity and superhydrophilicity to release H2 bubble in time, and the mechanical properties to resist destructive stress. Finally, some views on the further development of high current density HER electrocatalysts are proposed, such as scale up of the synthesis process, in situ characterization to reveal the micro mechanism, and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.
Collapse
Affiliation(s)
- Lishang Zhang
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Zhe Shi
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Yanping Lin
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Fali Chong
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Yunhui Qi
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
12
|
Luo Y, Zhang Z, Chhowalla M, Liu B. Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108133. [PMID: 34862818 DOI: 10.1002/adma.202108133] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical water splitting technology for producing "green hydrogen" is important for the global mission of carbon neutrality. Electrocatalysts with decent performance at high current densities play a central role in the industrial implementation of this technology. This field has advanced immensely in recent years, as witnessed by many types of catalysts designed and synthesized toward industriallyrelevant current densities (>200 mA cm-2 ). By discussing recent advances in this field, several key aspects are summarized that affect the catalytic performance for high-current-density electrocatalysis, including dimensionality of catalysts, surface chemistry, electron transport path, morphology, and catalyst-electrolyte interplay. The multiscale design strategy that considers these aspects comprehensively for developing high-current-density electrocatalysts are highlighted. The perspectives on the future directions in this emerging field are also put forward.
Collapse
Affiliation(s)
- Yuting Luo
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhiyuan Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Manish Chhowalla
- Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
13
|
Alom MS, Kananke-Gamage CC, Ramezanipour F. Perovskite Oxides as Electrocatalysts for Hydrogen Evolution Reaction. ACS OMEGA 2022; 7:7444-7451. [PMID: 35284721 PMCID: PMC8908488 DOI: 10.1021/acsomega.1c07203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 05/26/2023]
Abstract
Hydrogen generation through electrocatalytic splitting of water, i.e., hydrogen evolution reaction (HER), is an attractive method of converting the electricity generated from renewable sources into chemical energy stored in hydrogen molecules. A wide variety of materials have been studied in an effort to develop efficient and cost-effective electrocatalysts that can replace the traditional platinum/carbon catalyst. One family of functional materials that holds promise for this application is perovskite oxides. This mini-review discusses some of the progress made in the development of HER electrocatalysts based on perovskite oxides in the past decade. Given the diverse range of possible compositions of perovskite oxides, various studies have focused on compositional modifications to develop single-phase catalysts, whereas others have investigated heterostructures and composites that take advantage of synergistic interactions of different compounds with perovskite oxides. The recent advances indicate that this family of materials have great potential for utilization in HER electrocatalysis.
Collapse
|
14
|
Zhang S, Ma S, Hao X, Wang Y, Cao B, Han B, Zhang H, Kong X, Xu B. Controllable preparation of crystalline red phosphorus and its photocatalytic properties. NANOSCALE 2021; 13:18955-18960. [PMID: 34779477 DOI: 10.1039/d1nr06530k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-element phosphorus has received extensive attention in recent years because of its remarkable photocatalytic properties. In the present experiment, amorphous red phosphorus was controllably transformed into [P12(4)]P2[and Hittorf's phosphorus structures by performing bismuth catalysis. The temperature-controllable chemical vapor transport reaction realized the conversion of more than 90% of amorphous red phosphorus to single-phase crystalline red phosphorus. Under very mild ultrasonic treatment, the high-quality [P12(4)]P2[microbelts and Hittorf's phosphorus microrods were stripped into a few layers of nanobelts and sheet-like structures, respectively. As non-metallic catalysts, their rapid photocatalytic degradations of pollutants (methyl orange) and high hydrogen evolution rates revealed the rapid charge transfer and application potential of the crystalline red phosphorus catalyst. The results of this work could provide new ideas for the development of phosphorus-based crystalline photocatalytic systems.
Collapse
Affiliation(s)
- Shuai Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Ben Cao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Hao Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
15
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
16
|
Huang W, Zhou D, Qi G, Liu X. Fe-doped MoS 2nanosheets array for high-current-density seawater electrolysis. NANOTECHNOLOGY 2021; 32:415403. [PMID: 34229303 DOI: 10.1088/1361-6528/ac1195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 05/25/2023]
Abstract
Designing highly active and cost-effective electrocatalysts for seawater-splitting with large current densities is compelling for developing hydrogen energy. Great advancements in hydrogen evolution reaction (HER) have been achieved, but the progress on driving HER in seawater is still limited. Herein, Fe-doped MoS2nanoshseets array supported by 3D carbon fibers was explored to be an efficient HER electrocatalyst operating in seawater. Strikingly, it exhibited small overpotentials of 119 and 300 mV to reach the current densities of 10 and 250 mA cm-2in buffered seawater, respectively, both of them are comparable to the best-reported values under similar conditions. Meantime, the catalyst could keep the stable HER activity for 30 h without notable loss. Theoretical calculations revealed that Fe doping increases the S-edge activity. Our work provides a new avenue for designing MoS2-based HER electrocatalysts for industry application.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Dejin Zhou
- Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, People's Republic of China
| | - Gaocan Qi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xijun Liu
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| |
Collapse
|
17
|
Li S, Yang G, Ge P, Lin H, Wang Q, Ren X, Luo S, Philo D, Chang K, Ye J. Engineering Heterogeneous NiS 2 /NiS Cocatalysts with Progressive Electron Transfer from Planar p-Si Photocathodes for Solar Hydrogen Evolution. SMALL METHODS 2021; 5:e2001018. [PMID: 34927838 DOI: 10.1002/smtd.202001018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Indexed: 06/14/2023]
Abstract
The sluggish transfer of electrons from a planar p-type Si (p-Si) semiconductor to a cocatalyst restricts the activity of photoelectrochemical (PEC) hydrogen evolution. To overcome such inefficiency, an elegant interphase of the semiconductor/cocatalyst is generally necessary. Hence, in this work, a NiS2 /NiS heterojunction (NNH) is prepared in situ and applied to a planar p-Si substrate as a cocatalyst to achieve progressive electron transfer. The NNH/Si photocathode exhibits an onset potential of +0.28 V versus reversible hydrogen electrode (VRHE ) and a photocurrent density of 18.9 mA·cm-2 at 0 VRHE , as well as a 0.9% half-cell solar-to-hydrogen efficiency, which is much superior compared with those of NiS2 /Si and NiS/Si photocathodes. The enhanced performance for NNH/Si is attributed to the contact between the sectional n-type semiconducting NNH and the planar p-Si semiconductor through a p-Si/n-NiS/n-NiS2 manner that functions as a local pn-junction to promote electron transfer. Thus, the photogenerated electron is transferred from p-Si to n-NiS within NNH as the progressive medium, followed by to Ni2+ and/or S2 2- of the defect-rich n-NiS2 phase as the key active sites. This systematic work may pave the way for planar Si-based PEC applications of heterogeneous metal sulfide cocatalysts through the progressive transfer of electrons.
Collapse
Affiliation(s)
- Sijie Li
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Gaoliang Yang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Peng Ge
- School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Huiwen Lin
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Qi Wang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Xiaohui Ren
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Shunqin Luo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Davin Philo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Kun Chang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jinhua Ye
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
- TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|